精英家教网 > 高中数学 > 题目详情
设向量
a
b
的长度分别为4和3,夹角为60°,则|
a
+
b
|的值为(  )
A、37
B、13
C、
37
D、
13
考点:平面向量数量积的运算
专题:平面向量及应用
分析:利用数量积运算性质即可得出.
解答: 解:∵向量
a
b
的长度分别为4和3,夹角为60°,
|
a
|
=4,|
b
|
=3,
a
b
=4×3×cos60°=6.
则|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
42+32+2×6
=
37

故选:C.
点评:本题考查了向量数量积运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,现将一块等腰直角三角形ABC放在第一象限,斜靠在两坐标轴上,且点A(0,2),点C(1,0),如图所示:抛物线y=ax2-ax-2经过点B.
(1)求点B的坐标及a的值;
(2)在x轴下方的抛物线上有一动点M,其横坐标为m,△ABM的面积为S,求S关于m的关系是,并写出自变量m的取值范围
(3)在抛物线上是否存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在(0,+∞)上的函数,且对于任意的实数x,y有f(xy)=f(x)+f(y),当x>1时,f(x)>0.
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(2)=1,对任意实数t,不等式f(t2+1)-f(t2-kt+1)≤2恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α,β,γ,δ,其中γ∩δ=l,α∩γ=a,β∩γ=a′,a∥a′;α∩δ=b,β∩δ=b′,b∥b′.上述条件能否保证有α∥β?若能,给出证明;若不能,添加适当的条件,保证有α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=esinx-x,现给出如下四个结论:
①f(x)是奇函数;
②f(x)是偶函数;
③f(x)在R上是增函数;
④f(x)在R上是减函数.
其中正确结论的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+3
3x
,数列{an}满足a1=1,an+1=f(
1
an
)(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
1
anan+1
,Sn=b1+b2+…bn,若Sn
m-2015
2
对一切n∈N*成立,求最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

用定义证明函数f(x)=1-
2
x
在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax5+bx3+2,若f(-3)=15,则f(3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,cosB=-
5
13
,cosC=
4
5
.求:
(1)sin(B+C);
(2)sinA.

查看答案和解析>>

同步练习册答案