![]()
(1)求异面直线AE与BF所成的角;
(2)求平面BDF与平面AA1B所成二面角(锐角)的大小.
解:在长方体ABCD—A1B1C1D1中,以AB所在的直线为x轴,AD所在的直线为y轴,AA1所在的直线为z轴建立空间直角坐标系,
由已知AB=2,AA1=1,
可得A(0,0,0),B(2,0,0),F(1,0,1).
又AD⊥平面AA1B1B,
从而直线BD与平面AA1B1B所成的角即为∠DBA=30°.
又AB=2,AE⊥BD,AE=1,AD=
,
从而易得E(
,
,0),D(0,
,0).
(1)∵
=(
,
,0),
=(-1,0,1),
∴cos〈
,
〉=
,
即异面直线AE与BF所成的角为arccos
.
(2)易知平面AA1B1B的一个法向量m=(0,1,0),
设n=(x,y,1)是平面BDF的一个法向量,
=(-2,
,0),
由![]()
∴n=(1,
,1).
∴cos〈m,n〉=
,
即平面BDF与平面AA1B所成二面角(锐角)的大小为arccos
.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
| 3 |
| 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com