精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,点F是PB的中点,点E是边BC上的任意一点.
(1)求证:AF⊥EF;
(2)求二面角A﹣PC﹣B的平面角的正弦值.

【答案】
(1)证明:∵四边形ABCD是正方形,△PAB与△PAD均是以A为直角顶点的等腰直角三角形,

∴PA⊥AD,PA⊥AB,又AD∩AB=A,AB⊥BC,

∴PA⊥平面ABCD,又BC面ABCD,∴PA⊥BC,

∵AB∩PA=A,∴BC⊥面PAB,

∴BC⊥AF,

∵△PAB是以A为直角顶点的等腰直角三角形,F是PB中点,

∴AF⊥PB,

又PB∩BC=B,∴AF⊥平面PBC,

∵EF平面PBC,∴AF⊥EF


(2)解:以A为原点,AD为x轴,AB为y轴,P为z轴,

建立空间直角坐标系,

设AB=1,则A(0,0,0),B(0,1,0),C(1,1,0),P(0,0,1),

=(0,0,1), =(1,1,0),

设平面APC的法向量 =(x,y,z),

,取x=1,得 =(1,﹣1,0),

=(0,1,﹣1), =(1,1,﹣1),

设平面PBC的法向量 =(a,b,c),

,取b=1,得 =(0,1,1),

|cos< >|=| |=

∴< >=60°,又sin60°=

∴二面角A﹣PC﹣B的平面角的正弦值为


【解析】(1)由已知得PA⊥AD,PA⊥AB,AB⊥BC,从而PA⊥BC,进而BC⊥面PAB,又AF⊥PB,由此能证明AF⊥EF.(2)以A为原点,AD为x轴,AB为y轴,P为z轴,建立空间直角坐标系,利用向量法能求出二面角A﹣PC﹣B的平面角的正弦值.
【考点精析】关于本题考查的空间中直线与直线之间的位置关系,需要了解相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体P﹣ABCD中,平面ABCD⊥平面PAB,四边形ABCD为矩形,△PAB为正三角形,若AB=2,AD=1,E,F 分别为AC,BP中点.
(Ⅰ)求证EF∥平面PCD;
(Ⅱ)求直线DP与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二面角α﹣L﹣β的大小为 ,此二面角的张口内有一点P到α、β的距离分别为1和2,则P点到棱l的距离是(
A.
B.2
C.2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+3.
(1)若f(x)在(﹣∞, ]是减函数,在[ ,+∞)是增函数,求函数f(x)在区间[﹣1,5]的最大值和最小值.
(2)求实数a的取值范围,使f(x)在区间[﹣5,5]上是单调函数,并指出相应的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: 的离心率e= ,左顶点M到直线 =1的距离d= ,O为坐标原点.
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;
(3)在(2)的条件下,试求△AOB的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E,F,G分别为A1B1 , BB1 , B1C1的中点,则AC1与D1E所成角的余弦值为 , AC1与平面EFG所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙C:(x﹣1)2+(y﹣2)2=25,直线l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R)
(1)求证:对任意m∈R,直线l与⊙C恒有两个交点;
(2)求直线l被⊙C截得的线段的最短长度,及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2分别为双曲线C: =1的左、右焦点,若存在过F1的直线分别交双曲线C的左、右支于A,B两点,使得∠BAF2=∠BF2F1 , 则双曲线C的离心率e的取值范围是(
A.(3,+∞)
B.(1,2+
C.(3,2+
D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,当x≤0时,f(x)=x(2+x).
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象,并写出单调区间.

查看答案和解析>>

同步练习册答案