精英家教网 > 高中数学 > 题目详情
11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以E的四个顶点为顶点的四边形的面积为4$\sqrt{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A,B分别为椭圆E的左、右顶点,P是直线x=4上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,试探究,点B是否在以MN为直径的圆内?证明你的结论.

分析 (Ⅰ)依题意得$\frac{c}{a}$=$\frac{1}{2}$,$\frac{1}{2}$•2a•2b=4$\sqrt{3}$,又a2=b2+c2,由此解得a,b.即可得出.
(Ⅱ)点B在以MN为直径的圆内.分析如下:
方法1:由(Ⅰ)得A(-2,0),B(2,0).设M(x0,y0).又点M异于顶点A、B,可得-2<x0<2.由P、A、M三点共线可以得P.可得$\overrightarrow{BM}$•$\overrightarrow{BP}$>0,即可证明.
方法2:由(Ⅰ)得A(-2,0),B(2,0).设M(x1,y1),N(x2,y2),依题意,计算点B到圆心Q的距离与半径的差.|BQ|2-$\frac{1}{4}$|MN|2=(x1-2)(x2-2)+y1y2,两直线AP与BP的交点P在直线x=4上,可得$\frac{6{y}_{1}}{{x}_{1}+2}$=$\frac{2{y}_{2}}{{x}_{2}-2}$,化简后可得|BQ|2-$\frac{1}{4}$|MN|2<0,即可证明.

解答 解:(Ⅰ)依题意得$\frac{c}{a}$=$\frac{1}{2}$,$\frac{1}{2}$•2a•2b=4$\sqrt{3}$,又a2=b2+c2,由此解得a=2,b=$\sqrt{3}$.
所以椭圆E的方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(Ⅱ)点B在以MN为直径的圆内.证明如下:
方法1:由(Ⅰ)得A(-2,0),B(2,0).设M(x0,y0).
∵M点在椭圆上,∴y02=$\frac{3}{4}$(4-x02). ①
又点M异于顶点A、B,∴-2<x0<2.
由P、A、M三点共线可以得P$(4,\frac{6{y}_{0}}{{x}_{0}+2})$.
从而$\overrightarrow{BM}$=(x0-2,y0),$\overrightarrow{BP}$=$(2,\frac{6{y}_{0}}{{x}_{0}+2})$.
∴$\overrightarrow{BM}$•$\overrightarrow{BP}$=2x0-4+$\frac{6{y}_{0}^{2}}{{x}_{0}+2}$=$\frac{2}{{x}_{0}+2}$(x02-4+3y02). ②
将①代入②,化简得$\overrightarrow{BM}$•$\overrightarrow{BP}$=$\frac{5}{2}$(2-x0).
∵2-x0>0,∴$\overrightarrow{BM}$•$\overrightarrow{BP}$>0,于是∠MBP为锐角,从而∠MBN为钝角,
故点B在以MN为直径的圆内.
方法2:由(Ⅰ)得A(-2,0),B(2,0).设M(x1,y1),N(x2,y2),
则-2<x1<2,-2<x2<2,又MN的中点Q的坐标为$(\frac{{x}_{1}+{x}_{2}}{2},\frac{{y}_{1}+{y}_{2}}{2})$,
依题意,计算点B到圆心Q的距离与半径的差
|BQ|2-$\frac{1}{4}$|MN|2=$(\frac{{x}_{1}+{x}_{2}}{2}-2)^{2}$+$(\frac{{y}_{1}+{y}_{2}}{2})^{2}$-$\frac{1}{4}$[(x1-x22+(y1-y22]
=(x1-2)(x2-2)+y1y2 ③
直线AP的方程为y=$\frac{{y}_{1}}{{x}_{1}+2}$(x+2),直线BP的方程为y=$\frac{{y}_{2}}{{x}_{2}-2}$(x-2),
而两直线AP与BP的交点P在直线x=4上,
∴$\frac{6{y}_{1}}{{x}_{1}+2}$=$\frac{2{y}_{2}}{{x}_{2}-2}$,即y2=$\frac{3({x}_{2}-2){y}_{1}}{{x}_{1}+2}$ ④
又点M在椭圆上,则$\frac{{x}_{1}^{2}}{4}+\frac{{y}_{1}^{2}}{3}$=1,即y12=$\frac{3}{4}$(4-x12) ⑤
于是将④、⑤代入③,化简后可得|BQ|2-$\frac{1}{4}$|MN|2=$\frac{5}{4}$(2-x1)(x2-2)<0.

点评 本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、数量积运算性质、点与圆的位置关系,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在△ABC中,A=$\frac{π}{4}$,CD⊥AB,且AB=3CD,则sinC=$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x),y=g(x)的导函数图象如图,则y=f(x),y=g(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右端点分别为A、B两点,点C(0,$\sqrt{2}$b),若线段AC的垂直平分线过点B,则双曲线的离心率为$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)={e^{{x^2}+2x}}$,设$a=lg\frac{1}{5}\;\;,\;\;b={log_{\frac{1}{2}}}\frac{1}{3}\;\;,\;\;c={({\frac{1}{3}})^{0.5}}$,则有(  )
A.f(a)<f(b)<f(c)B.f(a)<f(c)<f(b)C.f(b)<f(c)<f(a)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{k}$=1的两个焦点分别为F1,F2,其一条渐近线的方程为y=x,若点P(m,1)在双曲线上,则$\overrightarrow{PF}$$•\overrightarrow{P{F}_{2}}$的值是(  )
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|x≥4},函数g(x)=$\sqrt{1-x+a}$的定义域为B,若A∩B=∅,则实数a的取值范围是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x|+a,g(x)=2|x-1|.
(Ⅰ)若a=0,解不等式f(x)≥g(x);
(Ⅱ)若对任意x∈R,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),$-\frac{π}{2}$<α<β<$\frac{π}{2}$.
(Ⅰ)若$\overrightarrow a⊥\overrightarrow b$,求$|\overrightarrow a-\overrightarrow b|$;
(Ⅱ)设$\overrightarrow c$=(1,0),若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

同步练习册答案