精英家教网 > 高中数学 > 题目详情
6.已知函数$f(x)={e^{{x^2}+2x}}$,设$a=lg\frac{1}{5}\;\;,\;\;b={log_{\frac{1}{2}}}\frac{1}{3}\;\;,\;\;c={({\frac{1}{3}})^{0.5}}$,则有(  )
A.f(a)<f(b)<f(c)B.f(a)<f(c)<f(b)C.f(b)<f(c)<f(a)D.f(b)<f(a)<f(c)

分析 由复合函数的单调性可得函数f(x)在(-1,+∞)上单调递增,进而得出大小关系.

解答 解:由复合函数的单调性可得函数f(x)在(-1,+∞)上单调递增,
又$-1<a=lg\frac{1}{5}<0$,$b={log_{\frac{1}{2}}}\frac{1}{3}>{log_{\frac{1}{2}}}\frac{1}{2}=1$,$0<c={({\frac{1}{3}})^{0.5}}<{({\frac{1}{3}})^0}=1$,
因此b>c>a,∴f(b)>f(c)>f(a).
故选:B.

点评 本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.观察下列等式:
13=12,13+23=32,13+23+33=62,13+23+33+43=102,…
根据上述规律,第n个等式为13+23+33+…+n3=(1+2+3+…+n)2=[$\frac{n(n+1)}{2}$]2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中,真命题为(  )
A.?x0∈R,e${\;}^{{x}_{0}}$≤0
B.?x∈R,2x>x2
C.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1
D.已知a,b为实数,则a>1,b>1是ab>1的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“m>1“是“函数f(x)=3x+m-3$\sqrt{3}$在区间[1,+∞)无零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=ln(x+1)-x2-x
(Ⅰ)若关于x的函数h(x)=f(x)+$\frac{5}{2}$x-t在[0,2]上恰有两个不同零点,求实数t的取值范围;
(Ⅱ)求证:对任意的n∈N*,不等式ln(n+2)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$+ln2都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,以E的四个顶点为顶点的四边形的面积为4$\sqrt{3}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A,B分别为椭圆E的左、右顶点,P是直线x=4上不同于点(4,0)的任意一点,若直线AP,BP分别与椭圆相交于异于A,B的点M、N,试探究,点B是否在以MN为直径的圆内?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)=max$\left\{{{x^2}-4x+3,\frac{3}{2}x+\frac{1}{2},3-x}\right\}$,其中max{a,b,c}表示三个数a,b,c中的最大值,则f(x)的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出下列命题:
①半径为2,圆心角的弧度数为$\frac{1}{2}$的扇形面积为$\frac{1}{2}$;
②在△ABC中,A<B的充要条件是sinA<sinB;
③在△ABC中,若AB=4,AC=2$\sqrt{6}$,B=$\frac{π}{3}$,则△ABC为钝角三角形;
④函数f(x)=lnx-2+x在区间(1,e)上存在零点.
其中真命题的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=x2+(a-1)x+2在(-∞,4]上是单调递减的,则实数a的取值范围为{a|a≤-7}.

查看答案和解析>>

同步练习册答案