精英家教网 > 高中数学 > 题目详情
1.函数f(x)=ln(x+1)-x2-x
(Ⅰ)若关于x的函数h(x)=f(x)+$\frac{5}{2}$x-t在[0,2]上恰有两个不同零点,求实数t的取值范围;
(Ⅱ)求证:对任意的n∈N*,不等式ln(n+2)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$+ln2都成立.

分析 (Ⅰ)利用导数求h(x)=f(x)+$\frac{5}{2}$x-t在[0,2]上的最大值h(1),由题意可得$\left\{\begin{array}{l}{h(0)=-t≤0}\\{h(1)=ln2+\frac{1}{2}-t>0}\\{h(2)=ln3-1-t≤0}\end{array}\right.$,求解不等式组得答案;
(Ⅱ)求出函数f(x)=ln(x+1)-x2-x在(0,+∞)上为减函数,可得x2+x≥ln(1+x),x≥0,令x=$\frac{1}{n}$,然后利用放缩法证明不等式ln(n+2)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$+ln2.

解答 (Ⅰ)解:f(x)=ln(x+1)-x2-x,
则函数h(x)=f(x)+$\frac{5}{2}$x-t=ln(x+1)-x2+$\frac{3x}{2}$-t,
∴h′(x)=$\frac{1}{x+1}-2x+\frac{3}{2}$=$-\frac{(x-1)(4x+5)}{2(x+1)}$.
当x∈(0,1)时,h′(x)>0,于是h(x)在(0,1)上单调递增;
当x∈(1,2)时,h′(x)<0,于是h(x)在(1,2)上单调递减.
依题意有$\left\{\begin{array}{l}{h(0)=-t≤0}\\{h(1)=ln2+\frac{1}{2}-t>0}\\{h(2)=ln3-1-t≤0}\end{array}\right.$,
∴ln3-1≤t≤ln2+$\frac{1}{2}$;
(Ⅱ)证明:由f(x)=ln(x+1)-x2-x,
得f′(x)=$\frac{1}{x+1}-2x-1$=$\frac{-x(2x+3)}{x+1}$,
当x≥0时,f′(x)≤0,则函数单调递减,
则f(x)≤f(0)=0,
故x2+x≥ln(1+x),x≥0,
令x=$\frac{1}{n}$,得($\frac{1}{n}$)2+$\frac{1}{n}$≥ln(1+$\frac{1}{n}$)=ln(1+n)-lnn,
即$\frac{1}{n(n-1)}+\frac{1}{n}$>$\frac{1}{{n}^{2}}+\frac{1}{n}$≥ln(1+n)-lnn,
从而$\frac{1}{n-1}$>ln(1+n)-lnn,
分别令n=2,3,4,…n,
则1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n-1}$+$\frac{1}{n}$>ln3-ln2+ln4-ln3+…+ln(1+n)-lnn+ln(2+n)-ln(1+n)=ln(n+2)-ln2,
故ln(n+2)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$+ln2.

点评 本题主要考查利用导数研究函数的单调性,考查函数、导数、不等式等基础知识,以及综合运用上述知识分析问题和解决问题的能力,利用已知函数的单调性结合放缩法是解决本题的关键,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点O为△ABC的外心,且$|{\overrightarrow{BA}}|=2,|{\overrightarrow{BC}}|=6$,则$\overrightarrow{BO}•\overrightarrow{AC}$=(  )
A.-32B.-16C.32D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F1、F2为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点P为双曲线C右支上一点,直线PF1与圆x2+y2=a2相切,且|PF2|=|F1F2|,则双曲线C的离心率为(  )
A.$\frac{\sqrt{10}}{3}$B.$\frac{4}{3}$C.$\frac{5}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:

(Ⅰ)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数;
(Ⅱ)若从学习时间不少于4小时的学生中选取4人,设选到的男生人数为X,求随机变量X的分布列;
(Ⅲ)试比较男生学习时间的方差${S_1}^2$与女生学习时间方差$S_2^2$的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图的程序框图,若输入k的值为3,则输出S的值为(  )
A.10B.15C.18D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)={e^{{x^2}+2x}}$,设$a=lg\frac{1}{5}\;\;,\;\;b={log_{\frac{1}{2}}}\frac{1}{3}\;\;,\;\;c={({\frac{1}{3}})^{0.5}}$,则有(  )
A.f(a)<f(b)<f(c)B.f(a)<f(c)<f(b)C.f(b)<f(c)<f(a)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆$\frac{{x}^{2}}{5}$+y2=1,点F为椭圆的左焦点,点P为椭圆上任意一点,点A(5,4),那么|PA|-|PF|的最小值5$-2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.定义集合A,B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2},B={1,2,3},则A*B中所有元素之和为14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={x|-3<x<1},N={x|x≤-3},则M∪N=(  )
A.B.{x|x<1}C.{x|x≥1}D.{x|x≥-3}

查看答案和解析>>

同步练习册答案