精英家教网 > 高中数学 > 题目详情
6.执行如图的程序框图,若输入k的值为3,则输出S的值为(  )
A.10B.15C.18D.21

分析 模拟执行程序框图,依次写出每次循环得到的n,S的值,当n=5,S=15时,不满足条件S<kn=15,退出循环,输出S的值为15,即可得解.

解答 解:模拟程序的运行,可得
k=3,n=1,S=1
满足条件S<kn,执行循环体,n=2,S=3
满足条件S<kn,执行循环体,n=3,S=6
满足条件S<kn,执行循环体,n=4,S=10
满足条件S<kn,执行循环体,n=5,S=15
此时,不满足条件S<kn=15,退出循环,输出S的值为15.
故选:B.

点评 本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={x∈N|1<x<log2k},集合A中至少有2个元素,则(  )
A.k≥4B.k>4C.k≥8D.k>8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(2x+$\frac{π}{3}$)+cos(2x+$\frac{π}{6}$)+msin2x (m∈R),f($\frac{π}{12}$)=2.
(Ⅰ)求 m 的值;
(Ⅱ)在△ABC 中,角 A,B,C 的对边分别为 a,b,c,若 b=2,f ($\frac{B}{2}$)=$\sqrt{3}$,△ABC 的面积是$\sqrt{3}$,求△ABC 的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x、y满足:$\left\{\begin{array}{l}{x-1≤0}\\{x-y+1≥0}\\{x+y-1≥0}\end{array}\right.$,则z=2x-y的最大值为(  )
A.2B.0C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合A={x|(x+4)(x+1)<0},集合B={x|x<-2},则A∩(∁RB)等于(  )
A.(-2,-1)B.[-2,4)C.[-2,-1)D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=ln(x+1)-x2-x
(Ⅰ)若关于x的函数h(x)=f(x)+$\frac{5}{2}$x-t在[0,2]上恰有两个不同零点,求实数t的取值范围;
(Ⅱ)求证:对任意的n∈N*,不等式ln(n+2)<1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$+ln2都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列命题是真命题的有④⑤
①平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆;
②如果向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$,$\overrightarrow{{e}_{3}}$是三个不共线的向量,$\overrightarrow{a}$是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得$\overrightarrow{a}$=λ1$\overrightarrow{{e}_{1}}$+λ2$\overrightarrow{{e}_{2}}$+λ3$\overrightarrow{{e}_{3}}$;
③方程y=$\sqrt{x}$与x=y2表示同一曲线;
④若命题p是命题q的充分非必要条件,则¬p是¬q的必要非充分条件;
⑤方程$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{2-m}$=1表示双曲线的充要条件是2<m<5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义域为R的偶函数,当x≥0时,$f(x)=\left\{\begin{array}{l}\frac{5}{16}{x^2},0≤x≤2\\{(\frac{1}{2})^x}+1,\;x>2\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0有且仅有6个不同的实数根,则实数a的取值范围是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,-1).
(1)若θ为$\overrightarrow{a}$与$\overrightarrow{b}$的夹角,求cosθ的值;
(2)若2$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$垂直,求k的值.

查看答案和解析>>

同步练习册答案