精英家教网 > 高中数学 > 题目详情
4.“m>1“是“函数f(x)=3x+m-3$\sqrt{3}$在区间[1,+∞)无零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由“函数f(x)=3x+m-3$\sqrt{3}$在区间[1,+∞)无零点,得到m>$\frac{1}{2}$,再根据充分条件和必要的条件的定义即可判断.

解答 解:函数f(x)=3x+m-3$\sqrt{3}$在区间[1,+∞)无零点,
则3x+m>3$\sqrt{3}$,
即m+1>$\frac{3}{2}$,
解得m>$\frac{1}{2}$,
故“m>1“是“函数f(x)=3x+m-3$\sqrt{3}$在区间[1,+∞)无零点的充分不必要条件,
故选:A

点评 主要考查充分条件、必要条件、充要条件的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在学生身体素质检查中,为了解山东省高中男生的身体发育状况,抽查了1000名男生的体重情况,抽查的结果表明他们的体重X(kg)服从正态分布N(u,22),正态分布密度曲线如图所示,若体重落在区间(58.5,62,5)属于正常情况,则在这1000名男生中不属于正常情况的人数是(  )
附:若随机变量X服从正态分布N(u,σ2),
则P(u-σ<X<u+σ)=0.683,P(u-2σ<X<u+2σ)=0.954.
A.954B.819C.683D.317

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在四棱锥P-ABCD中,底面ABCD是边长为 3 的菱形,∠ABC=60°,PA⊥平面ABCD,PA=3,F 是棱 PA上的一个动点,E为PD的中点.
(Ⅰ)若 AF=1,求证:CE∥平面 BDF;
(Ⅱ)若 AF=2,求平面 BDF 与平面 PCD所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=f(x),y=g(x)的导函数图象如图,则y=f(x),y=g(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘成折线图如下:

(Ⅰ)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数;
(Ⅱ)若从学习时间不少于4小时的学生中选取4人,设选到的男生人数为X,求随机变量X的分布列;
(Ⅲ)试比较男生学习时间的方差${S_1}^2$与女生学习时间方差$S_2^2$的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右端点分别为A、B两点,点C(0,$\sqrt{2}$b),若线段AC的垂直平分线过点B,则双曲线的离心率为$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)={e^{{x^2}+2x}}$,设$a=lg\frac{1}{5}\;\;,\;\;b={log_{\frac{1}{2}}}\frac{1}{3}\;\;,\;\;c={({\frac{1}{3}})^{0.5}}$,则有(  )
A.f(a)<f(b)<f(c)B.f(a)<f(c)<f(b)C.f(b)<f(c)<f(a)D.f(b)<f(a)<f(c)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知集合A={x|x≥4},函数g(x)=$\sqrt{1-x+a}$的定义域为B,若A∩B=∅,则实数a的取值范围是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=-$\frac{2}{3}$,则cos(π-2α)=(  )
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

同步练习册答案