精英家教网 > 高中数学 > 题目详情

已知椭圆中心在原点,焦点在轴上,椭圆短轴的端点和焦点组成的四边形为正方形,且.
(1)求椭圆方程;
(2)直线过点,且与椭圆相交于不同的两点,当面积取得最大值时,求直线的方程.

(1)(2)

解析试题分析:(1)由题意知:
故椭圆方程为.                                                         ……4分
(2)易知直线的斜率存在,设为,直线方程:,则
,
,则
,                                                            ……7分
所以
又点到直线的距离
.                                         …… 10分
,则,
当且仅当时,取“”,
此时的方程为.                                              …… 12分
考点:本小题主要考查椭圆标准方程的求解、直线与椭圆的位置关系的应用、韦达定理、弦长公式、点到直线的距离公式、三角形面积公式和利用基本不等式求最值等知识的综合应用,考查学生综合运用知识解决问题的能力和运算求解能力.
点评:直线与圆锥曲线的关系问题时高考时重点考查的题型,一般是压轴题,难度较大,运算比较复杂,要多加练习,牢固掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B,

(1)若|AB|=8,求抛物线的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求的面积S的最大值;
(3)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)双曲线的离心率为2,坐标原点到
直线AB的距离为,其中A,B.  
(1)求双曲线的方程;
(2)若是双曲线虚轴在轴正半轴上的端点,过作直线与双曲线交于两点,求
时,直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知:椭圆的中心为,长轴的两个端点为,右焦点为.若椭圆经过点上的射影为,且△的面积为5.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知圆=1,直线=1,试证明:当点在椭圆
运动时,直线与圆恒相交;并求直线被圆截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分9分)已知顶点在原点,焦点在轴上的抛物线过点
(1)求抛物线的标准方程;
(2)过点作直线交抛物线于两点,使得恰好平分线段,求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线过点
(I)求抛物线的方程;
(II)已知圆心在轴上的圆过点,且圆在点的切线恰是抛物线在点的切线,求圆的方程;
(Ⅲ)如图,点轴上一点,点是点关于原点的对称点,过点作一条直线与抛物线交于两点,若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已(12分)知椭圆的中心在坐标原点,离心率为,一个焦点是F(0,1).
(Ⅰ)求椭圆方程;
(Ⅱ)直线过点F交椭圆于A、B两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. 求轨迹E的方程,并说明该方程所表示曲线的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知椭圆的一个焦点与抛物线的焦点重合,P为椭圆与抛物线的一个公共点,且|PF|=2,倾斜角为的直线过点.
(1)求椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得关于直线对称,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案