精英家教网 > 高中数学 > 题目详情

(本小题满分12分)双曲线的离心率为2,坐标原点到
直线AB的距离为,其中A,B.  
(1)求双曲线的方程;
(2)若是双曲线虚轴在轴正半轴上的端点,过作直线与双曲线交于两点,求
时,直线的方程.

(1) (2)

解析试题分析:(1)由
设直线AB的方程为


(2)显然直线MN的斜率存在,设为K
设直线MN的方程为

所以,直线MN的方程为------6分
考点:双曲线方程及直线与双曲线位置关系
点评:本题中常转化为,进而用点的坐标表示

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知中心在原点O,焦点在x轴上的椭圆E过点(1,),离心率为
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线xy+1=0与椭圆E相交于A、B(BA上方)两点,问是否存在直线l,使l与椭圆相交于C、D(CD上方)两点且ABCD为平行四边形,若存在,求直线l的方程与平行四边形ABCD的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

( 本小题满分12分)如图所示,已知圆为圆上一动点,点上,点上,且满足的轨迹为曲线

求曲线的方程;
若过定点F(0,2)的直线交曲线于不同的两点(点在点之间),且满足,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆及直线
(1)当为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆C:的上顶点坐标为,离心率为.
(Ⅰ)求椭圆方程;
(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知过点的动直线与抛物线相交于两点,当直线的斜率是时,
(1)求抛物线的方程;(5分)
(2)设线段的中垂线在轴上的截距为,求的取值范围。(7分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)双曲线C与椭圆有相同的焦点,直线y=的一条渐近线.
(Ⅰ)求双曲线的方程;
(Ⅱ)过点(0,4)的直线,交双曲线于A,B两点,交x轴于点(点与的顶点不重合)。当 =,且时,求点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆中心在原点,焦点在轴上,椭圆短轴的端点和焦点组成的四边形为正方形,且.
(1)求椭圆方程;
(2)直线过点,且与椭圆相交于不同的两点,当面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)过椭圆的一个焦点的直线交椭圆于两点,求面积的最大值.(为坐标原点)

查看答案和解析>>

同步练习册答案