(本题满分9分)已知顶点在原点,焦点在
轴上的抛物线过点
.
(1)求抛物线的标准方程;
(2)过点
作直线交抛物线于
两点,使得
恰好平分线段
,求直线
的方程
科目:高中数学 来源: 题型:解答题
(本题12分)
已知椭圆
的右焦点为F,上顶点为A,P为C
上任一点,MN是圆
的一条直径,若与AF平行且在y轴上的截距为
的直线
恰好与圆
相切.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若
的最大值为49,求椭圆C
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知椭圆C:
的上顶点坐标为
,离心率为
.
(Ⅰ)求椭圆方程;
(Ⅱ)设P为椭圆上一点,A为左顶点,F为椭圆的右焦点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)双曲线C与椭圆
有相同的焦点,直线y=
为
的一条渐近线.
(Ⅰ)求双曲线
的方程;
(Ⅱ)过点
(0,4)的直线
,交双曲线
于A,B两点,交x轴于
点(
点与
的顶点不重合)。当
=![]()
,且
时,求
点的坐标
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知抛物线
的焦点为
,准线为
,过
上一点P作抛物线的两切线,切点分别为A、B,
(1)求证:
;
(2)求证:A、F、B三点共线;
(3)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆中心在原点,焦点在
轴上,椭圆短轴的端点和焦点组成的四边形为正方形,且
.
(1)求椭圆方程;
(2)直线
过点
,且与椭圆相交于
、
不同的两点,当
面积取得最大值时,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分10分)已知中心在原点O,焦点在
轴上的椭圆C的离心率为
,点A,B分别是椭圆C的长轴、短轴的端点,点O到直线AB的距离为
。![]()
(1)求椭圆C的标准方程;
(2)已知点E(3,0),设点P、Q是椭圆C上的两个动点,满足EP⊥EQ,
求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
为双曲线
的左、右焦点.
(Ⅰ)若点
为双曲线与圆![]()
的一个交点,且满足
,求此双曲线的离心率;
(Ⅱ)设双曲线的渐近线方程为
,
到渐近线的距离是
,过
的直线交双曲线于A,B两点,且以AB为直径的圆与
轴相切,求线段AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com