精英家教网 > 高中数学 > 题目详情

【题目】(1)已知当时,不等式恒成立,求实数的取值范围

(2)解关于的不等式.

【答案】(1)x=3(2)当时,解集为: ,当时,解集为:

【解析】试题分析:(1)将不等式转化为关于a的不等式,根据一次函数性质得不等式组,解不等式组可得实数的取值范围(2)分类讨论:由于a=0表示的为一次函数,a 为二次函数,那么分为两大类,结合开口方向和根的大小,和二次函数图形可知,需要整体分为a>0,a=0,a<0来求解,那么对于的大小将会影响到根的大小,所以要将a分为,以及来得到结论,

试题解析:解:(1)原式可化为:

为关于的一次函数,由题意:

解得:

(2)原不等式可化为:

时,原不等式的解集为:

时,原不等式的解集为:

时,原不等式的解集为:

时,原不等式的解集为:

时,原不等式的解集为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B两点,且 共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积SAOB= 时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则P(B|A)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1
(1)求证:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心为原点,且与直线 相切.

(1)求圆C的方程;

(2)点在直线上,过点引圆C的两条切线 ,切点为 ,求证:直线恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证:{ + }为等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n﹣1) an , 求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x﹣a|,a<0.
(Ⅰ)证明f(x)+f(﹣ )≥2;
(Ⅱ)若不等式f(x)+f(2x)< 的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax﹣lnx,F(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在区间(0,ln3)上具有相同的单调性,求实数a的取值范围;
(2)设函数h(x)=x2﹣f(x)有两个极值点x1、x2 , 且x1∈(0, ),求证:h(x1)﹣h(x2)> ﹣ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)求的定义域及其零点;

(2)讨论并用函数单调性定义证明函数在定义域上的单调性;

(3)设,当时,若对任意,存在,使得,求实数的取值范围.

查看答案和解析>>

同步练习册答案