精英家教网 > 高中数学 > 题目详情

【题目】过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B两点,且 共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积SAOB= 时,求椭圆的方程.

【答案】
(1)解:设AB:y=﹣x+c,直线AB交椭圆于两点,A(x1,y1),B(x2,y2),

b2x2+a2(﹣x+c)2=a2b2

(b2+a2)x2﹣2a2cx+a2c2﹣a2b2=0,

=(x1+x2,y1+y2),与 = 共线,

可得3(y1+y2)﹣(x1+x2)=0,3(﹣x1+c﹣x2+c)﹣(x1+x2)=0


(2)解:由a2=3b2,可设椭圆的方程为: ,c2=3b2﹣b2=2b2

AB:y=﹣x+ b, ,可得:

AB的距离为:|AB|= = =

O到AB距离

椭圆方程为


【解析】(1)设AB:y=﹣x+c,A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用韦达定理,通过 共线,即可求解椭圆的离心率.(2)利用第一问的结果a2=3b2,设椭圆的方程为: ,AB:y=﹣x+ b,联立方程组,通过韦达定理求解|AB|,O到AB距离,通过三角形的面积,即可求解椭圆方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知( +3x2n的展开式中,各项系数的和与其各项二项式系数的和之比为32.
(1)求n;
(2)求展开式中二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,内角A,B,C成等差数列,其对边a,b,c满足2b2=3ac,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是等差数列,若a2+2,a4+4,a6+6构成等比数列,这数列{an}的公差d等于(
A.1
B.﹣1
C.2
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设z1 , z2是复数,给出下列四个命题: ①若|z1﹣z2|=0,则 = ②若z1= ,则 =z2
③若|z1|=|z2|,则z1 =z2 ④若|z1|=|z2|,则z12=z22
其中真命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 分别在上, ,现将四边形沿折起,使平面平面

)若是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由.

)求三棱锥的体积的最大值,并求此时点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自点A(-33)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有密度高、经济效益好的特点研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数不超过4(尾/立方米)时,的值为(千克/年);当时,的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年)

(1)当时,求函数的表达式;

(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知当时,不等式恒成立,求实数的取值范围

(2)解关于的不等式.

查看答案和解析>>

同步练习册答案