【题目】过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B两点,且 共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积S△AOB= 时,求椭圆的方程.
【答案】
(1)解:设AB:y=﹣x+c,直线AB交椭圆于两点,A(x1,y1),B(x2,y2),
,b2x2+a2(﹣x+c)2=a2b2,
(b2+a2)x2﹣2a2cx+a2c2﹣a2b2=0,
, , =(x1+x2,y1+y2),与 = 共线,
可得3(y1+y2)﹣(x1+x2)=0,3(﹣x1+c﹣x2+c)﹣(x1+x2)=0
(2)解:由a2=3b2,可设椭圆的方程为: ,c2=3b2﹣b2=2b2, ,
AB:y=﹣x+ b, ,可得: ,
即 ,
∴ , ,
AB的距离为:|AB|= = = ,
O到AB距离 .
,
椭圆方程为
【解析】(1)设AB:y=﹣x+c,A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用韦达定理,通过 共线,即可求解椭圆的离心率.(2)利用第一问的结果a2=3b2,设椭圆的方程为: ,AB:y=﹣x+ b,联立方程组,通过韦达定理求解|AB|,O到AB距离,通过三角形的面积,即可求解椭圆方程.
科目:高中数学 来源: 题型:
【题目】设z1 , z2是复数,给出下列四个命题: ①若|z1﹣z2|=0,则 = ②若z1= ,则 =z2
③若|z1|=|z2|,则z1 =z2 ④若|z1|=|z2|,则z12=z22
其中真命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形中, , , , , 、分别在、上, ,现将四边形沿折起,使平面平面.
()若,是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由.
()求三棱锥的体积的最大值,并求此时点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4(尾/立方米)时,的值为(千克/年);当时,是的一次函数;当达到(尾/立方米)时,因缺氧等原因,的值为(千克/年).
(1)当时,求函数的表达式;
(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com