精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}是等差数列,若a2+2,a4+4,a6+6构成等比数列,这数列{an}的公差d等于(
A.1
B.﹣1
C.2
D.﹣2

【答案】B
【解析】解:由题意a2+2,a4+4,a6+6构成等比数列,

∴(a4+4)2=(a2+2)(a6+6),

∴(a4+4)2=(a4﹣2d+2)(a4+2d+6),

∴a42+8a4+16=a42+(2d+6﹣2d+2)a4+(2d+6)(﹣2d+2),

∴a42+8a4+16=a42+8a4+(2d+6)(﹣2d+2),

∴(2d+6)(﹣2d+2)=16,

解得d=﹣1,

故选:B.

【考点精析】本题主要考查了等比数列的通项公式(及其变式)的相关知识点,需要掌握通项公式:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

1)请画出上表数据的散点图.

2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程.

3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.

(参考数值:3×2.54×35×46×4.566.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体ABCD﹣A1B1C1D1中,E、F分别是BB1 , CD的中点,求证:平面ADE⊥平面A1FD1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=log44x+1+kxgx=log4a2xa),其中fx)是偶函数.

1)求实数k的值;

2)求函数gx)的定义域;

(3)若函数fx)与gx)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马,侧棱底面,且,点的中点,连接.

(1)证明:平面,试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;

(2)记阳马的体积为,四面体的体积为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了预防甲型流感,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时室内每立方米空气中的含药量与时间成正比例,药物燃烧完后满足,如图所示,现测得药物8燃毕,此时室内空气中每立方米的含药量为6,请按题中所供给的信息,解答下列各题.

(1)求关于的函数解析式;

(2)研究表明,当空气中每立方米的含药量不低于且持续时间不低于时才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 =1的右焦点F作斜率k=﹣1的直线交椭圆于A,B两点,且 共线.
(1)求椭圆的离心率;
(2)当三角形AOB的面积SAOB= 时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为F1 , F2 , 离心率为 ,短轴上的两个顶点为A,B(A在B的上方),且四边形AF1BF2的面积为8.
(1)求椭圆C的方程;
(2)设动直线y=kx+4与椭圆C交于不同的两点M,N,直线y=1与直线BM交于点G,求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN= BB1
(1)求证:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大小.

查看答案和解析>>

同步练习册答案