【题目】如图,已知矩形BB1C1C所在平面与底面ABB1N垂直,在直角梯形ABB1N中,AN∥BB1 , AB⊥AN,CB=BA=AN=
BB1 . ![]()
(1)求证:BN⊥平面C1B1N;
(2)求二面角C﹣C1N﹣B的大小.
【答案】
(1)证明:∵四边形BB1C1C是矩形,∴BC⊥BB1,
∵平面BB1C1C⊥底面ABB1N,平面BB1C1C∩底面ABB1N=BB1,BC平面BB1C1C,
∴BC⊥平面ABB1N,
以B为原点,以BA,BB1,BC为坐标轴建立空间直角坐标系B﹣xyz,
![]()
设AB=1,则B(0,0,0),N(1,1,0),B1(0,2,0),C1(0,2,1),C(0,0,1)
∴
=(1,1,0),
=(﹣1,1,0),
=(0,0,1),
∴
=﹣1+1=0,
=0,
∴BN⊥NB1,BN⊥B1C1,又NB1∩B1C1=B1,
∴BN⊥平面C1B1N.
(2)解:
=(﹣1,1,1),
=(﹣1,﹣1,1),
=(0,2,0),
设平面BNC1的法向量为
=(x,y,z),则
,
=0,
∴
,令x=1得
=(1,﹣1,2),
同理可得平面CNC1的法向量为
=(1,0,1),
∴cos<
>=
=
.
∴二面角C﹣C1N﹣B的大小为30°.
【解析】(1)证明BC⊥平面ABB1N,建立空间坐标系,利用向量证明BN⊥NB1,NB⊥B1C1,故而得出结论;(2)求出两平面的法向量,计算法向量的夹角即可得出二面角的大小.
科目:高中数学 来源: 题型:
【题目】“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度
(单位:千克/年)是养殖密度
(单位:尾/立方米)的函数.当
不超过4(尾/立方米)时,
的值为
(千克/年);当
时,
是
的一次函数;当
达到
(尾/立方米)时,因缺氧等原因,
的值为
(千克/年).
(1)当
时,求函数
的表达式;
(2)当养殖密度
为多大时,鱼的年生长量(单位:千克/立方米)
可以达到最大,并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列判断正确的是 (把正确的序号都填上).
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函数,则实数b=2;
②若函数
在区间
上递增,在区间
上也递增,则函数
必在
上递增;
③f(x)表示-2x+2与-2x2+4x+2中的较小者,则函数f(x)的最大值为1;
④已知f(x)是定义在R上的不恒为零的函数,且对任意的x、y∈R都满足f(x·y)=x·f(y)+y·f(x),则f(x)是奇函数.Ks
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的三个内角A,B,C所对应的边分别为a,b,c,且满足bcosC+
c=a.
(1)求△ABC的内角B的大小;
(2)若△ABC的面积S=
b2 , 试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知cos(75°+α)=
,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
患三高疾病 | 不患三高疾病 | 合计 | |
男 | 6 | 30 | |
女 | |||
合计 | 36 |
(2)能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关? 下列的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2=
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=2,an+1=2﹣
(n=1,2,3,…).
(Ⅰ)求a2 , a3 , a4的值,猜想出数列的通项公式an;
(Ⅱ)用数学归纳法证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com