精英家教网 > 高中数学 > 题目详情
6.已知α,β,γ都是锐角,且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,则α+β+γ的值为$\frac{π}{4}$.

分析 利用两角和的正切公式求得 tan(α+β+γ) 的值,再结合α+β+γ的范围,求得α+β+γ的值.

解答 解:∵α,β,γ都是锐角,且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{7}{9}$<1,
再根据α+β∈(0,π),可得α+β∈(0,$\frac{π}{4}$).
又  tan(α+β+γ)=$\frac{tan(α+β)+tanγ}{1-tan(α+β)tanγ}$=1,α+β+γ∈(0,$\frac{3π}{4}$),则α+β+γ=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.

点评 本题主要考查两角和的正切公式,根据三角函数的值求角,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:
常喝不常喝合计
肥胖62
不肥胖18
合计30
(1)请将上面的列联表补充完整;
(2)是否能在犯错误的概率不超过0.5%的前提下认为肥胖与常喝碳酸饮料有关?请说明你的理由.
参考数据:
P(K2≥k)0.050.005
k3.8417.879
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果一个正方形的四个项点都在三角形的三边上,则该正方形是该三角形的内接正方形,那么面积为2的锐角△ABC的内接正方形面积的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知:函数f(x)=$\sqrt{4-x}$+lg(3x-9)的定义域为A,集合B={x|x-a<0,a∈R}.
(1)求:集合A;
(2)求:A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x>2}\\{lo{g}_{\frac{1}{2}}(\frac{9}{4}-x)+{a}^{2},x≤2}\end{array}\right.$,若f(x)的值域为R,则实数a的取值范围是(-∞,-1]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.从一堆产品(其中正品与次品数均多于2件)中任取2件,观察正品件数和次品件数,则下列每对事件中,是对立事件的是(  )
A.恰好有1件次品和恰好有两件次品B.至少有1件次品和全是次品
C.至少有1件次品和全是正品D.至少有1件正品和至少有1件次品

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.对具有线性相关关系的变量x,y,有一组观测数据(xi,yi)(i=1,2,…,8),其回归直线方程是$\stackrel{∧}{y}$=$\frac{1}{6}$x+$\stackrel{∧}{a}$,且x1+x2+x3+…+x8=3(y1+y2+y3+…+y8)=6,则$\stackrel{∧}{a}$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知i是虚数单位,a,b∈R,若a+(b-1)i=(2+i)i,则a+b=(  )
A.-1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的前n项和为Sn,an+3=2+an,S90=2670,则a1+a2+a3=2.

查看答案和解析>>

同步练习册答案