分析 利用两角和的正切公式求得 tan(α+β+γ) 的值,再结合α+β+γ的范围,求得α+β+γ的值.
解答 解:∵α,β,γ都是锐角,且tanα=$\frac{1}{2}$,tanβ=$\frac{1}{5}$,tanγ=$\frac{1}{8}$,∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{7}{9}$<1,
再根据α+β∈(0,π),可得α+β∈(0,$\frac{π}{4}$).
又 tan(α+β+γ)=$\frac{tan(α+β)+tanγ}{1-tan(α+β)tanγ}$=1,α+β+γ∈(0,$\frac{3π}{4}$),则α+β+γ=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.
点评 本题主要考查两角和的正切公式,根据三角函数的值求角,属于基础题.
科目:高中数学 来源: 题型:解答题
| 常喝 | 不常喝 | 合计 | |
| 肥胖 | 6 | 2 | |
| 不肥胖 | 18 | ||
| 合计 | 30 |
| P(K2≥k) | 0.05 | 0.005 |
| k | 3.841 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 恰好有1件次品和恰好有两件次品 | B. | 至少有1件次品和全是次品 | ||
| C. | 至少有1件次品和全是正品 | D. | 至少有1件正品和至少有1件次品 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com