精英家教网 > 高中数学 > 题目详情
(2013•菏泽二模)已知定义在R上的奇函数f(x)满足f(x+2e)=-f(x)(其中e=2.7182…),且在区间[e,2e]上是减函数.令a=
ln2
2
ln3
3
,c=
ln5
5
,则(  )
分析:由f(x)是R上的奇函数及f(x+2e)=-f(x),可得f(x+2e)=f(-x),从而可知f(x)关于x=e对称,由f(x)在[e,2e]上的单调性可得f(x)在[0,e]上的单调性,由a,b,c的近似值可得其大小关系,进而得到f(a)、f(b)、f(c)的大小关系.
解答:解:∵f(x)是R上的奇函数,满足f(x+2e)=-f(x),
∴f(x+2e)=f(-x),
∴函数f(x)关于直线x=e对称,
∵f(x)在区间[e,2e]上为减函数,∴f(x)在区间[0,e]上为增函数,
∵a=
ln2
2
≈0.3466,b=
ln3
3
≈0.3662,c=
ln5
5
≈0.3219,
∴c<a<b,∴f(c)<f(a)<f(b),
故选C.
点评:本题考查函数的奇偶性、单调性及其应用,考查学生灵活运用知识分析解决问题的能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•菏泽二模)已知x,y满足线性约束条件
x-y+1≥0
x+y-2≤0
x+4y+1≥0
,若
a
=(x,-2),
b
=(1,y),则Z=
a
b
的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•菏泽二模)已知直线l1:x+(a-2)y-2=0,l2:(a-2)x+ay-1=0,则“a=-1”是“l1⊥l2”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•菏泽二模)设z=1-i(i是虚数单位),则
2
z
+
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•菏泽二模)已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ为实数,(
b
a
)⊥
c
,则λ=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•菏泽二模)已知三个数2,m,8构成一个等比数列,则圆锥曲线
x2
m
+
y2
2
=1
的离心率为(  )

查看答案和解析>>

同步练习册答案