精英家教网 > 高中数学 > 题目详情
已知平面α,β,γ,直线m,l,点A,以下面四个命题中正确的命题是(  )
分析:A.利用异面直线的定义判断.B.根据线面平行的性质判断.C.利用面面平行的判定定理判断.D.根据线面平行的性质判断.
解答:解:A.若A∈l,则l与m为相交直线,所以A错误.
B.根据线面平行的判定条件可知,m必须在平面α外,否则不成立.所以B错误.
C.因为α⊥γ,γ∩α=m,l⊥m,γ∩β=l,所以l⊥α成立.
D.当m∥l时,α,β可能相交,所以D错误.
故选C.
点评:本题主要考查空间直线和平面的位置关系的判断,要求熟练掌握相应的判定定理和性质定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面向量
a
=(
3
,-1),
b
=(sinx,cosx)
(1)若已知
a
b
,求tanx的值
(2)若已知f(x)=
a
b
,求f(x)的最大值及取得最大值的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面内三点A(2,2),B(1,3),C(7,x)满足
BA
AC
,则x的值为(  )
A、3B、6C、7D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上动点M到定点F(0,2)的距离比M到直线y=-4的距离小2,则动点M满足的方程为
x2=8y
x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面坐标系中,点O为原点,A(-3,-4),B(5,-12)
(1)若
OC
=
OA
+
OB
OD
=
OA
-
OB
,求
OC
OD
的坐标;
(2)求
OA
OB

(3)若点P在直线AB上,且
OP
AB
,求
OP
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宜宾二模)已知平面直角坐标系xoy上的区域D由不等式组
x+y≥2
x≤1
y≤2
给定,若M(x,y)为D上的动点,A的坐标为(-1,1),则
OA
OM
的取值范围是
[0,2]
[0,2]

查看答案和解析>>

同步练习册答案