【题目】已知椭圆C: (a>b>0)的短轴长为2,过上顶点E和右焦点F的直线与圆M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线l过点(1,0),且与椭圆C交于点A,B,则在x轴上是否存在一点T(t,0)(t≠0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB (其中O为坐标原点),若存在,求出 t的值;若不存在,请说明理由.
【答案】解:(Ⅰ)由已知中椭圆C的短轴长为2,可得:b=1,
则过上顶点E(0,1)和右焦点F(0,c)的直线方程为: ,
即x+cy﹣c=0,
由直线与圆M:x2+y2﹣4x﹣2y+4=0相切.
故圆心M(2,1)到直线的距离d等于半径1,
即 ,
解得:c2=3,
则a2=4,
故椭圆C的标准方程为: ;
(Ⅱ)设A(x1 , y1),B(x2 , y2),
当直线AB的斜率不为0时,设直线 方程为:x=my+1,代入 得:(m2+4)y2+2my﹣3=0,
则y1+y2= ,y1y2= ,
设直线TA,TB的斜率分别为k1 , k2 ,
若∠OTA=∠OTB,
则k1+k2= + = =
= =0,
即2y1y2m+(y1+y2)(1﹣t)= + =0,
解得:t=4,
当直线AB的斜率为0时,t=4也满足条件,
综上,在x轴上存在一点T(4,0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB.
【解析】(I)由已知可得:b=1,结合直线与圆M:x2+y2﹣4x﹣2y+4=0相切.进而可得c2=3,a2=4,即得椭圆C的标准方程;(Ⅱ)在x轴上是否存在一点T(4,0),使得不论直线l的斜率如何变化,总有∠OTA=∠OTB,联立直线与椭圆方程,结合∠OTA=∠OTB 时,直线TA,TB的斜率k1 , k2和为0,可证得结论.
【考点精析】利用椭圆的标准方程对题目进行判断即可得到答案,需要熟知椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+ ).
(1)写出曲线C的参数方程;
(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定理:“实数m,n为常数,若函数满足,则函数的图象关于点成中心对称”.
(1)已知函数的图象关于点成中心对称,求实数b的值;
(2)已知函数满足,当时,都有成立,且当时, ,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f=f(x+a)=f(﹣x)成立,则称此函数具有“P(a)性质”;
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,试写出所有a的值;若不具有“P(a)性质”,请说明理由;
(2)已知y=f(x)具有“P(0)性质”,当x≤0时,f(x)=(x+t)2 , t∈R,求y=f(x)在[0,1]上的最大值;
(3)设函数y=g(x)具有“P(±1)性质”,且当﹣ ≤x≤ 时,g(x)=|x|,求:当x∈R时,函数g(x)的解析式,若y=g(x)与y=mx(m∈R)交点个数为1001个,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在下列命题中,正确命题的个数为( )
①两个复数不能比较大小;
②,若,则;
③若是纯虚数,则实数;
④是虚数的一个充要条件是;
⑤若是两个相等的实数,则是纯虚数;
⑥的一个充要条件是.
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面ADC∥平面A1B1C1 , B为线段AD的中点,△ABC≈△A1B1C1 , 四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M为棱A1C1的中点.
(Ⅰ)若N为线段DC1上的点,且直线MN∥平面ADB1A1 , 试确定点N的位置;
(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com