精英家教网 > 高中数学 > 题目详情

函数数学公式(其中A>0,ω>0)的振幅为2,周期为π.
(1)求f(x)的解析式;
(2)求f(x)的单调增区间;
(3)求f(x)在数学公式的值域.

解:(1)∵函数(其中A>0,ω>0)的振幅为2,周期为π.
∴A=2,π=.解得ω=2.

(2)由,解得(k∈Z).
∴f(x)的单调增区间为
(3)∵,∴
∴f(x)的单调递减区间为;单调递增区间为
∴当时,即时,函数f(x)取得最小值-2;
当x=0时,时,函数f(x)取得最大值=
故函数f(x)的值域为
分析:(1)利用振幅的定义和周期公式,即可得出;
(2)利用正弦函数的单调性即可得出;
(3)由,可得.进而得到f(x)的单调递减区间为;单调递增区间为.即可得到值域.
点评:熟练掌握三角函数的图象与性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数ω(其中A>0,ω>0,-π<φ<π )在x=
π
6
处取得最大值2,其图象与轴的相邻两个交点的距离为
π
2

(I)求f(x)的解析式;
(II)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年临沂市质检一文)(14分)已知函数(其中a>0),且在点(0,0)处的切线与直线平行。

   (1)求c的值;

   (2)设的两个极值点,且的取值范围;

   (3)在(2)的条件下,求b的最大值。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年湖南省株洲市醴陵二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=log2(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设函数,其中a>0.若函数f(x)与g(x)的图象有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆七中高三(下)3月月考数学试卷(文科)(解析版) 题型:解答题

已知函数,其中a>0.
(1)、若x=1是y=f(x)的一个极值点,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)、若曲线y=f(x)与x轴有3个不同交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年北京市西城区高考数学二模试卷(文科)(解析版) 题型:解答题

已知函数,其中a>0.
(Ⅰ)若a=2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)在区间[2,3]上的最小值.

查看答案和解析>>

同步练习册答案