精英家教网 > 高中数学 > 题目详情

如图,已知=2,若BD=6,且M,N分别是EH,FG的中点,则MN=

[  ]
A.

2

B.

3

C.

4

D.

3.5

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年江西卷理)(12分)

如图,已知△ABC是边长为1的正三角形,M、N分别是

边AB、AC上的点,线段MN经过△ABC的中心G,

设ÐMGA=a(

(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数

(2)求y=的最大值与最小值

查看答案和解析>>

科目:高中数学 来源:2014届安徽省高一下学期期中考试数学试卷(解析版) 题型:解答题

如图,已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是AB、

PC的中点.

(1)求证:EF∥平面PAD;

(2)求证:EF⊥CD;

(3)若ÐPDA=45°求EF与平面ABCD所成的角的大小.

【解析】本试题主要考查了线面平行和线线垂直的运用,以及线面角的求解的综合运用

第一问中,利用连AC,设AC中点为O,连OF、OE在△PAC中,∵ F、O分别为PC、AC的中点   ∴ FO∥PA …………①在△ABC中,∵ E、O分别为AB、AC的中点 ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD∵ EF Ì 平面EFO   ∴ EF∥平面PAD.

第二问中在矩形ABCD中,∵ EO∥BC,BC⊥CD ∴ EO⊥CD  又    ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC∴ EO为EF在平面AC内的射影       ∴ CD⊥EF.

第三问中,若ÐPDA=45°,则 PA=AD=BC    ∵ EOBC,FOPA

∴ FO=EO 又∵ FO⊥平面AC∴ △FOE是直角三角形 ∴ ÐFEO=45°

证:连AC,设AC中点为O,连OF、OE(1)在△PAC中,∵ F、O分别为PC、AC的中点∴ FO∥PA …………①    在△ABC中,∵ E、O分别为AB、AC的中点  ∴ EO∥BC ,又         ∵ BC∥AD   ∴ EO∥AD …………②综合①、②可知:平面EFO∥平面PAD    

∵ EF Ì 平面EFO      ∴ EF∥平面PAD.

(2)在矩形ABCD中,∵ EO∥BC,BC⊥CD∴ EO⊥CD  又        ∵ FO∥PA,PA⊥平面AC  ∴ FO⊥平面AC ∴ EO为EF在平面AC内的射影     ∴ CD⊥EF.

(3)若ÐPDA=45°,则 PA=AD=BC         ∵ EOBC,FOPA

∴ FO=EO 又    ∵ FO⊥平面AC   ∴ △FOE是直角三角形 ∴ ÐFEO=45°

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省高三高考样卷数学文卷 题型:填空题

如图,已知矩形ABCDAB=2,AD=1.若点EFGH分别在线段ABBCCDDA上,且AEBFCGDH,则四边形EFGH面积的最小值为________.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(ab>0)过点(1,),离心率为,左、右焦点分别为F1F2.点P为直线lxy=2上且不在x轴上的任意一点,直线PF1PF2与椭圆的交点分别为ABCDO为坐标原点.

(1)求椭圆的标准方程.

(2)设直线PF1PF2的斜率分别为k1k2.

(ⅰ)证明:=2.

(ⅱ)问直线l上是否存在点P,使得直线OAOBOCOD的斜率kOAkOBkOCkOD满足kOAkOBkOCkOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案