精英家教网 > 高中数学 > 题目详情
10.已知函数y=f(x)是周期为2的奇函数,当x∈(-1,0)时,f(x)=2x(x+1),则f($\frac{5}{2}$)=(  )
A.-$\frac{1}{2}$B.-$\frac{1}{4}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 利用函数的周期以及函数的奇偶性,函数的解析式,求解即可.

解答 解:∵定义在R上的奇函数y是周期函数,最小正周期是2.
当x∈(-1,0)时,f(x)=2x(x+1),
∴f($\frac{5}{2}$)=f($\frac{1}{2}$)=-f(-$\frac{1}{2}$)=-f($\frac{1}{2}$)=$\frac{1}{2}$.
故选:D.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-2|+|x-a|.
(1)当a=2时,求不等式f(x)≥4的解集;
(2)不等式f(x)<4的解集中的整数有且仅有1,2,3,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=2ax-2+1(a>0且a≠1)的图象必过定点(  )
A.(0,2)B.(0,3)C.(2,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x<0}\\{-{x}^{2},x≥0}\end{array}\right.$,若2≤f(f(x))≤6,则实数x的取值范围是[$\sqrt{2}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点F为抛物线C:y2=4x的焦点,点P是准线l上的动点,直线PF交抛物线于A、B两点,若点P的纵坐标是m(m≠0),点D为准线l与x轴的交点.
(1)若m=2,求△DAB的面积;
(2)设$\overrightarrow{AF}$=λ$\overrightarrow{FB}$,$\overrightarrow{AP}$=μ$\overrightarrow{PB}$,求证λ+μ为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个口袋中装有3个白球和3个黑球,独立事件是(  )
A.第一次摸出的是白球与第一次摸出的是黑球
B.摸出后不放回,第一次摸出的是白球,第二次摸出的是黑球
C.摸出后放回,第一次摸出的是白球,第二次摸出的是黑球
D.一次摸两个球,共摸两次,第一次摸出颜色相同的球与第一次摸出颜色不同的球

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列判断中正确的是②④
①f(x)=($\sqrt{x}$)2是偶函数;
②f(x)=$\sqrt{{x}^{3}}$是奇函数;
③y=x°及y=(x-1)°都是偶函数;
④f(x)=ln($\sqrt{1-{x}^{2}}$-x)是非奇非偶函数;
⑤f(x)=$\sqrt{3-{x}^{2}}$+$\frac{9}{1-|x|}$是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,$\overrightarrow{AB}$•$\overrightarrow{AC}$=2,∠BAC=$\frac{π}{3}$,则S△ABC=$\sqrt{3}$;若点M为△ABC内一动点,且S△AMC=1,$\frac{1}{{S}_{△AMB}}$+$\frac{1}{{S}_{△CMB}}$的最小值为$\frac{2(5+\sqrt{3})}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=$\sqrt{\frac{x}{2-x}}$-lg(1-x)的定义域为[0,1).

查看答案和解析>>

同步练习册答案