精英家教网 > 高中数学 > 题目详情
精英家教网如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.
(1)求证:点E是边BC的中点;
(2)若EC=3,BD=2
6
,求⊙O的直径AC的长度.
分析:(1)利用EC为⊙O的切线,ED也为⊙O的切线可求EC=ED,再求得EB=EC,EB=ED可知点E是边BC的中点;
(2)解答此题需要运用圆切线和割线的性质和勾股定理求解.
解答:精英家教网证明:(1)连接DO;
∵∠ACB=90°,AC为直径,
∴EC为⊙O的切线;
又∵ED也为⊙O的切线,
∴EC=ED,
又∵∠EDO=90°,
∴∠BDE+∠ADO=90°,
∴∠BDE+∠A=90°°
又∵∠B+∠A=90°,
∴∠BDE=∠B,
∴EB=ED,
∴EB=EC,即点E是边BC的中点;

(2)∵BC,BA分别是⊙O的切线和割线,
∴BC2=BD•BA,
∴(2EC)2=BD•BA,即BA•2
6
=36,
∴BA=3
6

在Rt△ABC中,由勾股定理得
AC=
AB2-BC2
=
(3
6
)
2
-62
=3
2
点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,D为BC上一点,∠DAC=30°,BD=2,AB=2
3
,则AC的长为(  )
A、2
2
B、3
C、
3
D、
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于点P.
(1)若AE=CD,点M为BC的中点,求证:直线MP∥平面EAB
(2)若AE=2,CD=1,求锐二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

8.如图,在Rt△ABC中,∠CAB=90°,AB=2,AC=
2
2
.DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设
DM
DN
=λ,试确定实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,AC=1,BC=x,D是斜边AB的中点,将△BCD沿直线CD翻折,若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是(  )
A、(0,
3
]
B、(
2
2
,2]
C、(
3
,2
3
]
D、(2,4]

查看答案和解析>>

同步练习册答案