精英家教网 > 高中数学 > 题目详情
15.直三棱柱ABC-A1B1C1的三视图如图所示.

(1)求三棱柱ABC-A1B1C1的体积;
(2)若点D为棱AB的中点,求证:AC1∥平面CDB1

分析 (1)由直三棱柱的三视图求出S△ABC,高BB1,由此能求出三棱柱ABC-A1B1C1的体积.
(2)连结B1C,BC1,交于点O,连结OD,则OD∥AC1,由此能证明AC1∥平面CDB1

解答 解:(1)由直三棱柱的三视图得:
${S}_{ABC}=\frac{1}{2}×3×2=3$,高BB1=4,
∴三棱柱ABC-A1B1C1的体积V=S△ABC×BB1=3×4=12.
证明:(2)连结B1C,BC1,交于点O,连结OD,
∵点D为棱AB的中点,
∴OD∥AC1
∵OD?平面CDB1,AC1?平面CDB1
∴AC1∥平面CDB1

点评 本题考查三棱锥的体积的求法,考查线面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.过抛物线y2=4x的焦点F的直线交抛物线于A、B两点,点O是坐标原点,若|AF|=5,则弦AB的长为(  )
A.10B.$\frac{25}{4}$C.$\frac{25}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.响应国家提出的“大众创业,万众创新”的号召,小王同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为2万元,每生产x万件,需另投入流动成本为C(x)万元.在年产量不足8万件时,$C(x)=\frac{1}{3}{x^2}+2x$(万元);在年产量不小于8万件时,$C(x)=7x+\frac{100}{x}-37$(万元).每件产品售价为6元.假设小王生产的商品当年全部售完.
(Ⅰ)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式(注:年利润=年销售收入-固定成本-流动成本);
(Ⅱ)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,x)若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值是(  )
A.-2B.0C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆O的半径为2,PA、PB为圆O的两条切线,A、B为切点(A与B不重合),则$\overrightarrow{PA}$$•\overrightarrow{PB}$的最小值为(  )
A.-12+4$\sqrt{2}$B.-16+4$\sqrt{2}$C.-12+8$\sqrt{2}$D.-16+8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.($\frac{64}{27}$)${\;}^{\frac{1}{3}}$+log3$\frac{10}{9}$+log3$\frac{9}{10}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\frac{{3{x^2}}}{{\sqrt{1-x}}}+lg(3x+1)$的定义域是(  )
A.$\left\{x|-\frac{1}{3}<x<1\right\}$B.{x|x<1}C.$\left\{x|x>-\frac{1}{3}\right\}$D.$\left\{x|x>1或x<-\frac{1}{3}\right\}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={-1,0,1},$B=\left\{x\right.|\frac{x+1}{x-1}\left.{<0}\right\}$,则A∩B={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知p:-2≤x≤1,q:(x-a)(x-a-4)>0,若p是q成立的充分不必要条件,则实数a的取值范围是(-∞,-6)∪(1,+∞).

查看答案和解析>>

同步练习册答案