| A. | -12+4$\sqrt{2}$ | B. | -16+4$\sqrt{2}$ | C. | -12+8$\sqrt{2}$ | D. | -16+8$\sqrt{2}$ |
分析 利用圆切线的性质:与圆心切点连线垂直;设出一个角,通过解直角三角形求出PA,PB的长;利用向量的数量积公式表示出$\overrightarrow{PA}$$•\overrightarrow{PB}$;利用三角函数的二倍角公式化简函数,通过换元,再利用基本不等式求出最值.
解答 解:设PA与PO的夹角为α,则|PA|=|PB|=$\frac{2}{tanα}$,
y=$\overrightarrow{PA}$•$\overrightarrow{PB}$=|$\overrightarrow{PA}$||$\overrightarrow{PB}$|cos2α
=$\frac{4}{ta{n}^{2}α}$•cos2α=$\frac{4co{s}^{2}α}{si{n}^{2}α}$•cos2α
=4$•\frac{1+cos2α}{1-cos2α}•cos2α$
记cos2α=μ.则y=4$•\frac{μ(μ+1)}{1-μ}$=4[(-μ-2)+$\frac{2}{1-μ}$]=-12+4(1-μ)+$\frac{8}{1-μ}$
≥-12+8$\sqrt{2}$.当且仅当μ=1-$\sqrt{2}$时,y取得最小值:8$\sqrt{2}-12$.
即$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为8$\sqrt{2}$-12.
故选:C.
点评 本题考查圆切线的性质、三角函数的二倍角公式、向量的数量积公式、基本不等式求函数的最值.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\sqrt{5}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}+1}}{2}$ | B. | $\frac{{\sqrt{2}+1}}{2}$ | C. | $\sqrt{2}+1$ | D. | $\sqrt{5}+1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m<n | B. | m≤n | C. | m>n | D. | m≥n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\sqrt{x^2}$和$y=\root{3}{x^3}$ | B. | y=|1-x|和$y=\sqrt{{{({x-1})}^2}}$ | ||
| C. | $y=\frac{{{x^2}-1}}{x-1}$和y=x+1 | D. | y=x0和y=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com