精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex+ae-x是R上的奇函数,
(1)求a的值;
(2)试判断函数f(x)的单调性,并证明你的结论.
考点:函数奇偶性的性质,函数单调性的性质
专题:函数的性质及应用
分析:(1)根据函数f(x)=ex+ae-x是R上的奇函数,可得f(0)=1+a=0,从而求得a的值.
(2)由(1)可得函数f(x)的解析式,再根据增函数减去减函数的差为增函数,可得函数f(x)在R上是增函数.
解答: 解:(1)∵函数f(x)=ex+ae-x是R上的奇函数,∴f(0)=1+a=0,∴a=-1.
(2)由(1)可得函数f(x)=ex-
1
ex
,再根据y=ex在R上是增函数,且y=
1
ex
在R上是减函数,
可得函数f(x)=ex-
1
ex
在R上是增函数.
点评:本题主要考查函数的奇偶性的应用,注意利用增函数减去减函数,结果为增函数,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不等式
x-3
2-x
≥0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,且当x≥0时,f(x)=-
1
4x
+
1
2x
,则此函数的值域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若集合A={x∈R|y=lg(2-x)},B={y∈R|y=2x-1,x∈A},则∁R(A∩B)=(  )
A、R
B、(-∞,0]∪[2,+∞)
C、[2,+∞)
D、(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
3
=1.
(1)若椭圆C与该双曲线共焦点,且有一交点p(2,3),求椭圆C方程;
(2)设(1)中椭圆C的左、右顶点分别为A,B,右焦点为F,直线l为椭圆C的右准线,N为l上的一动点,且在x轴上方,直线AN与椭圆交于点M.
①若AM=MN,求∠AMB的余弦值;
②设过A,F,N三点的圆与y轴交于P、Q两点,当线段PQ的中点为(0,9)时,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)d的离心率为
2
2
,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(
2
+1
).一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.
(1)求椭圆和双曲线的标准方程;
(2)是否存在常熟λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若钝角三角形三内角的度数依次成等差数列,且最小边长与最大边长的比值为m,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则关于x的方程x2+2ax+b2=0有两个虚根的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的偶函数f(x)满足f(x)=-
1
f(x+3)
且f(4)=-2,则f(2018)的值为(  )
A、4
B、-2
C、2
D、
1
4

查看答案和解析>>

同步练习册答案