精英家教网 > 高中数学 > 题目详情

若点(1,1)在不等式组数学公式所表示的平面区域内,则m2+n2的取值范围是________.

[,61]
分析:将点(1,1)的坐标代入不等式组,就可以得到一个关于m、n的不等式组,再在平面直角坐标系中作出符合这个不等式组的区域图形,将m2+n2的取值范围问题转化为区域内的点到原点距离平方的取值范围问题,最终可得答案.
解答:根据题意,点(1,1)适合不等式组
将坐标代入,得关于m、n的不等式组:
在mon坐标系中,作出符合上不等式组表示的平面区域,如下图

m2+n2 表示点P(m,n)到原点的距离的平方,根据图形得
当P点与点B(5,6)重合时,这个平方和最大,即(m2+n2 )max=52+62=61
而P到直线AC的距离平方的最小值,即(m2+n2)min=(2=
因此,m2+n2的取值范围是[,61]
点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x)=-
1
4
x4+
2
3
x3+ax2-2x-2
,其中a为实常数,已知函数y=f(x)的图象在点(-1,f(-1))处的切线与y轴垂直.
(1)求实数a的值;
(2)若关于x的方程f(3x)=m有三个不等实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+2ax-ln(1+x)+1.
(1)若函数f(x)的图象在点(0,f(0))处的切线方程是x-y+b=0,求实数a,b的值;
(2)当a=
1
2
时,求函数f(x)的单调区间;
(3)若方程f(x)=x2+(2a-
1
2
)x+
1
2
(a+1)在[0,2]上有两个不等实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(A类)已知函数g(x)=(a+1)x-2+1(a>0)的图象恒过定点A,且点A又在函数f(x)=log
3
(x+a)的图象上.
(1)求实数a的值;                (2)解不等式f(x)<log
3
a;
(3)|g(x+2)-2|=2b有两个不等实根时,求b的取值范围.
(B类)设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)+f(y)
(1)求f(0)的值;     (2)求证:f(x)为奇函数;
(3)若函数f(x)是R上的增函数,已知f(1)=1,且f(2a)>f(a-1)+2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
12
ax2-lnx

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)讨论f(x)的单调性;
(3)是否存在a的值,使得方程f(x)=2有两个不等的实数根?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x),对任意不等的实数x1,x2都有[f(x1)-f(x2)](x1-x2)<0成立,又函数y=f(x-1)的图象关于点(1,0)对称,若不等式f(
x
2
 
-2x)+f(2y-
y
2
 
)≤0
成立,则当1≤x<4时,
y
x
的取值范围是(  )
A、(-
1
2
,1]
B、(-∞,1]
C、[-
1
2
,1]
D、[-
1
2
,∞)

查看答案和解析>>

同步练习册答案