精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x2-a(a+2)x
x+1
(a∈R).
(1)当a=1时,求f(x)在点(3,f(3))处的切线方程;
(2)当a>-1时,解关于x的不等式f(x)>0;
(3)求函数f(x)在[0,2]上的最小值.
(1)当a=1时,f(x)=
x2-3x
x+1
,∴f(3)=0
f′(x)=
x2+2x-3
(x+1)2
,x≠-1,∴f′(3)=
3
4

所以f(x)在点(3,f(3))处的切线方程为y=
3
4
(x-3)
,即3x-4y-9=0
(2)当a>0时,a(a+2)>0,故不等式的解集为(-1,0)∪(a(a+2),+∞)
当a=0时,f(x)=
x2
x+1
,故不等式的解集为(-1,0)∪(0,+∞)
当-1<a<0时,-1<a(a+2)<0,故不等式的解集为(-1,a(a+2))∪(0,+∞)
(3)令t=x+1,则t∈[1,3]
∴f(x)=g(t)=
(a+1)2
t
+t-(a2+2a+2)
,g′(t)=-
(a+1)2
t2
+1

若a+1=0,g(t)在t∈[1,3]上递增,故g(t)即f(x)的最小值为0
若a+1≠0,则g(t)在(0,|a+1|)上递减,在(|a+1|,+∞)上递增,
①若0<|a+1|≤1,即-2≤a≤0且a≠-1时,g(t)在t∈[1,3]上递增,故g(t)即f(x)的最小值为0;
②若1<|a+1|<3,即-4<a<-2或0<a<2,g(t)在[1,|a+1|]上递减,在[|a+1|,3]递增,
故g(t)即f(x)的最小值为g(|a+1|)=2|a+1|-(a2+2a+2);
③若|a+1|≥3,即a≥2或a≤-4时,g(t)在t∈[1,3]上递减,故g(t)即f(x)的最小值为-
2
3
a
2
-
4
3
a+
4
3

综上所述:f(x)min=
0,-2≤a≤0
-a2,0<a<2
-a2-4a-4,-4<a<-2
-
2
3
a
2
-
4
3
a+
4
3
,a≥2或a≤-4
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案