精英家教网 > 高中数学 > 题目详情
精英家教网如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥DQ,则a的值等于
 
分析:利用三垂线定理的逆定理、直线与圆相切的判定与性质、矩形的性质、平行线的性质即可求出.
解答:解:连接AQ,取AD的中点O,连接OQ.精英家教网
∵PA⊥平面ABCD,PQ⊥DQ,
∴由三垂线定理的逆定理可得DQ⊥AQ.
∴点Q在以线段AD的中点O为圆心的圆上,
又∵在BC上有且仅有一个点Q满足PQ⊥DQ,∴BC与圆O相切,(否则相交就有两点满足垂直,矛盾.)
∴OQ⊥BC,
∵AD∥BC,∴OQ=AB=1,∴BC=AD=2,
即a=2.
故答案为:2.
点评:本题体现转化的数学思想,转化为BC与以线段AD的中点O为圆心的圆相切是关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,矩形ABCD中,AB=
8
3
3
,BC=2,椭圆M的中心和准线分别是已知矩形的中心和一组对边所在直线,矩形的另一组对边间的距离为椭圆的短轴长,椭圆M的离心率大于0.7.
(I)建立适当的平面直角坐标系,求椭圆M的方程;
(II)过椭圆M的中心作直线l与椭圆交于P,Q两点,设椭圆的右焦点为F2,当∠PF2Q=
3
时,求△PF2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=1,AD=2,M为AD的中点,则
BM
BD
的值为
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

A 若方程ax-x-a=0有两个实数解,则a的取值范围是
(1,+∞)
(1,+∞)

B 如图,矩形ABCD中边长AB=2,BC=1,E为BC的中点,若F为正方形内(含边界)任意一点,则
AE
AF
的最大值为
9
2
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,将△ADE沿AE翻折到D'点,当D'在平面ABC上的射影落在AE上时,四棱锥D'-ABCE的体积是
2
6
-
2
12
2
6
-
2
12
;当D'在平面ABC上的射影落在AC上时,二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使
PQ
QD
,说明理由.
(2)问当Q点惟一,且cos<
BP
QD
>=
10
10
时,求点P的位置.

查看答案和解析>>

同步练习册答案