如果对于任意实数x,[x]表示不超过x的最大整数.例如[3.27]=3,[0.6]=0.那么“[x]=[y]”是“|x-y|<1”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】分析:先根据[x]的定义可知,[x]=[y]⇒|x-y|<1,而取x=1.9,y=2.1,此时满足|x-y|=0.2<1,但[x]≠[y],根据若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件进行判定即可.
解答:解:[x]=[y]⇒-1<x-y<1即|x-y|<1
而取x=1.9,y=2.1,此时|x-y|=0.2<1,而[x]=1,[y]=2,[x]≠[y]
∴“[x]=[y]”是“|x-y|<1”的充分而不必要条件
故选A
点评:判断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.