精英家教网 > 高中数学 > 题目详情
7.在△ABC中,a=2,b=3,A=$\frac{π}{6}$,则cosB的值为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{4}{5}$C.±$\frac{\sqrt{7}}{4}$D.±$\frac{4}{5}$

分析 直接利用正弦定理以及同角三角函数的基本关系式化简求解即可.

解答 解:在△ABC中,a=2,b=3,A=$\frac{π}{6}$,则sinB=$\frac{bsinA}{a}$=$\frac{3×\frac{1}{2}}{2}$=$\frac{3}{4}$.
cosB=$±\sqrt{1-{sin}^{2}B}$=$±\frac{\sqrt{7}}{4}$.
故选:C.

点评 本题考查正弦定理是应用,同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设A={3},B={3,5},则下列表达关系不正确的是(  )
A.A?BB.A⊆BC.3∈BD.5⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线y2=2px(p>0)的焦点为F,点A,B在抛物线上,且满足∠AFB=$\frac{2π}{3}$,过弦AB的中点P作抛物线准线的垂线PM,垂足为M,则$\frac{|PM|}{|AB|}$的最大值为(  )
A.$\frac{\sqrt{3}}{3}$B.1C.$\frac{2\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.(文)已知△ABC中,cosA=a,sinB=$\frac{4}{5}$,当a满足条件0时,cosC具有唯一确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)计算:1.5${\;}^{-\frac{1}{3}}$×(-$\frac{7}{6}$)0+80.25×$\root{4}{2}$+($\root{3}{2}$×$\sqrt{3}$)6-$\sqrt{(\frac{2}{3})^{\frac{2}{3}}}$的值.
(Ⅱ)计算:lg22•lg250+lg25•lg40的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数y=f(x)的定义域为R,则“f(0)=0”是“函数f(x)为奇函数”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各组函数中,f(x)与g(x)表示同一个函数的是(  )
A.$f(x)=x,g(x)=\sqrt{x^2}$B.$f(x)=x,g(x)=\root{3}{x^3}$
C.f(x)=x,g(x)=(x-1)0D.$f(x)=\frac{{{x^2}-9}}{x+3},g(x)=x-3$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若$f(x)=\frac{1}{{{2^x}-1}}+a$是奇函数,且函数$g(x)={log_a}[m{x^2}-(m+5)x+12]$在[1,3]上为增函数,则m的取值范围是$\frac{1}{2}$<m≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:$\frac{cos(\frac{5}{2}π-α)cos(3π-α)tan(-α-π)}{tan(4π-α)sin(5π+α)}$.

查看答案和解析>>

同步练习册答案