精英家教网 > 高中数学 > 题目详情

设等差数列的前项和为,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前项和为,且 (为常数),令,求数列的前项和

(Ⅰ)  (Ⅱ)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求数列{an}, {bn}的通项公式;
(II)设,数列{cn}的前n项和为Tn,求证

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和,满足:.
(Ⅰ)求数列的通项
(Ⅱ)若数列的满足为数列的前项和,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,若
(1)求数列的通项公式:
(2)令
①当为何正整数值时,
②若对一切正整数,总有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列,即当时,记.记. 对于,定义集合的整数倍,,且.
(1)求集合中元素的个数;
(2)求集合中元素的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,对任意的,都有,且;数列满足.
(Ⅰ)求的值及数列的通项公式;
(Ⅱ)求证:对一切成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是首项的等比数列,其前项和中,成等差数列.
(1)求数列的通项公式;
(2)设,求数列{}的前项和为
(3)求满足的最大正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b1(a2-a1)=b2.
(1)求数列{an}和{bn}的通项公式;
(2)设cnan bn,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列满足:
(1)求的通项公式
(2)当时,求证:

查看答案和解析>>

同步练习册答案