已知各项均为正数的数列满足:。
(1)求的通项公式
(2)当时,求证:
(1),猜测:。用数学归纳法证明。
(2)即证:
解析试题分析:(1),猜测:。下用数学归纳法证明:
①当,猜想成立;
②假设当时猜想成立,即,
由条件,
,
两式相减得:,则当时,
,
时,猜想也成立。
故对一切的成立。
(2),即证:
对,令(),则
,
显然,,所以,
所以,在上单调递减.
由,得,即.
所以,.
所以
. 得证。
考点:本题主要考查数列的概念,数学归纳法的应用。
点评:难题,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题。归纳推理问题,往往与数列知识相结合,需要综合应用数列的通项公式、求和公式等求解。本题利用数学归纳法证明不等式,对数学式子变形能力要求较高。
科目:高中数学 来源: 题型:解答题
设满足以下两个条件的有穷数列为阶“期待数列”:
①;②.
(1)若等比数列为 ()阶“期待数列”,求公比;
(2)若一个等差数列既是 ()阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记阶“期待数列”的前项和为:
(ⅰ)求证:;
(ⅱ)若存在使,试问数列能否为阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列是等差数列,
(1)判断数列是否是等差数列,并说明理由;
(2)如果,试写出数列的通项公式;
(3)在(2)的条件下,若数列得前n项和为,问是否存在这样的实数,使当且仅当时取得最大值。若存在,求出的取值范围;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,为正整数.
(Ⅰ)求和的值;
(Ⅱ)数列的通项公式为(),求数列的前项和;
(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com