精英家教网 > 高中数学 > 题目详情

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标

答案:
解析:

  解:由e=知,,所以椭圆的方程可设为:

  设点,则有

  

  当且仅当时,取得最大值,由题意,解得:

  因此椭圆的方程为:,此时点

  说明:能取得最值,这是因为


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=
3
2
,已知点P(0
3
2
)到这个椭圆上的点最远距离是
7
.求这个椭圆的方程,并求椭圆上到点P的距离等于
7
的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到这个椭圆上点的最远距离为,求这个椭圆方程,并求椭圆上到点P的距离为的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学选修1-1 2.1椭圆练习卷(解析版) 题型:解答题

设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到椭圆上的点的最远距离是,求这个椭圆方程。

 

查看答案和解析>>

同步练习册答案