精英家教网 > 高中数学 > 题目详情
17.不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,则a的取值范围(  )
A.a>1B.a≤1C.a<-1D.a≤-1

分析 根据正切函数的单调性求出tanx在x∈(-$\frac{π}{4},\frac{π}{2}$)上的范围即可得到结论.

解答 解:∵x∈(-$\frac{π}{4},\frac{π}{2}$),
∴tan(-$\frac{π}{4}$)<tanx,
即tanx>-1,
若不等式tanx>a在x∈(-$\frac{π}{4},\frac{π}{2}$)上恒成立,
则a≤-1,
故选:D

点评 本题主要考查函数恒成立问题,结合正切函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚,为更加详细闯红灯人数的作用,在某一个路口进行了五天试验,得到当天的处罚金额与当天闯红灯人数
当天处罚金额x(单位:元)05101520
当天闯红灯的人数y8050402010
(1)根据以上数据,建立当天闯红灯人数y关于当天处罚金额x的回归直线方程;
(2)根据统计数据,上述路口每天经过的行人约为400人,每人闯红灯的可能性相同,在行0元处罚的情况下,记甲、乙、丙三人中闯红灯的人数为X,求X的分布列和数学期望相互独立).
附:回归直线方程中系数计算公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\overline{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.曲线y=$\frac{1}{2}$x2+x在点(2,4)处的切线与坐标轴围成的三角形面积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.证明:$\sqrt{ab}$≥$\frac{2ab}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A为椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{16}$=1上的点,点B坐标为(2,1),有$\overrightarrow{AP}=2\overrightarrow{PB}$,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在正棱柱ABC-A1B1C1中,E,F分别为线段AA1,C1B的中点,求证:EF∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{x}^{2}-1}{{x}^{2}}$.
(1)证明f(x)为偶函数;
(2)若不等式k≤xf(x)+$\frac{1}{x}$在x∈[1,3]上恒成立,求实数k的取值范围;
(3)当x∈[$\frac{1}{m}$,$\frac{1}{n}$](m>0,n>0)时,函数g(x)=tf(x)+1,(t≥0)的值域为[2-3m,2-3n],求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a,b,c分别为角A,B,C的对边,且4sin2$\frac{A+C}{2}$-cos2B=$\frac{23}{9}$.求cosB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用tanα表示$\frac{sinα+cosα}{2sinα-cosα}$,sin2α+sinαcosα+3cos2α.

查看答案和解析>>

同步练习册答案