精英家教网 > 高中数学 > 题目详情
8.点A(0,2)是圆O:x2+y2=16内定点,B,C是这个圆上的两动点,若BA⊥CA,求BC中点M的轨迹方程为x2+y2-2y-6=0.

分析 设M(x,y),连接OC,OM,MA,则由垂径定理,可得OM⊥BC,OM2+MC2=OC2,即可求BC中点M的轨迹方程.

解答 解:设M(x,y),连接OC,OM,MA,则
由垂径定理,可得OM⊥BC,
∴OM2+MC2=OC2
∵AM=CM,
∴OM2+AM2=OC2
∴x2+y2+x2+(y-2)2=16,
即BC中点M的轨迹方程为x2+y2-2y-6=0.
故答案为:x2+y2-2y-6=0.

点评 垂径定理的使用,让我们在寻找M的坐标中的x与y时,跳过了两个动点B,C,而直达一个非常明确的结果,减少了运算量.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知球面上有A、B、C三点,BC=2$\sqrt{3}$,AB=AC=2,若球的表面积为20π,则球心到平面ABC的距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若两直线l1:ax+2y+a-2=0与l2:(a-2)x+4y+2=0互相平行,则常数a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某市统计局就某地居民的月收入调查了10 000人,并根据所得数据画出样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)内).根据频率分布直方图算出样本数据的中位数是(  )
A.2360B.2380C.2400D.2420

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x],给定下列叙述:①函数f(x)的最大值为1;②函数f(x)的最小值为0;③函数G(x)=f(x)-$\frac{1}{2}$有无数个零点;④函数f(x)是增函数.其中正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln$\frac{1+x}{1-x}$.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)求证:当x∈(0,1)时,f(x)>2(x+$\frac{{x}^{3}}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2-2x+3,当0≤x≤m时,该函数有最大值3,最小值2,则实数m的取值范围是(  )
A.[1,+∞)B.[0,2]C.(-∞,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在区间(0,+∞)上的函数f(x)满足$f(\frac{x_1}{x_2})=f({x_1})-f({x_2})$,且当x>1时,f(x)<0.
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的单调性并予以证明;
(Ⅲ)若f(3)=-1,解不等式f(x2)>-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{9x}{a{x}^{2}+1}$(a>0).
(1)若a>$\frac{2}{3}$,且曲线y=f(x)在点(2,f(2))处的切线的斜率为-$\frac{27}{25}$,求函数f(x)的单调区间;
(2)求证:当x>1时,f(x)>$\frac{9+lnx}{a{x}^{2}+1}$.

查看答案和解析>>

同步练习册答案