精英家教网 > 高中数学 > 题目详情
3.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f(x)=x-[x],给定下列叙述:①函数f(x)的最大值为1;②函数f(x)的最小值为0;③函数G(x)=f(x)-$\frac{1}{2}$有无数个零点;④函数f(x)是增函数.其中正确的个数为(  )
A.1个B.2个C.3个D.4个

分析 定义函数f(x)=x-[x],其图象:f(x)=$\left\{\begin{array}{l}{0,当x为整数时}\\{(0,1),当x不为整数时}\end{array}\right.$. 即可得出.

解答 解:定义函数f(x)=x-[x],其图象:
∴f(x)=$\left\{\begin{array}{l}{0,当x为整数时}\\{(0,1),当x不为整数时}\end{array}\right.$.
可得:①函数f(x)的最大值为1,不正确;
②函数f(x)的最小值为0,正确;
③函数G(x)=f(x)-$\frac{1}{2}$有无数个零点,正确;
④函数f(x)是周期函数,不是增函数,因此不正确.
其中正确的个数为2.
故选:B.

点评 本题考查了取整函数[x]的图象与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.θ∈[0,π],$cosθ=\frac{3}{4}$,则$tan\frac{θ}{2}$=(  )
A.$\sqrt{7}$B.$\frac{{\sqrt{7}}}{7}$C.7D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛物线$y=\frac{1}{8}{x^2}$的焦点到双曲线${y^2}-\frac{x^2}{3}=1$的一条渐近线的距离为(  )
A.1B.2C.$\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知空间中三点A(1,0,0),B(2,1,-1),C(0,-1,2),则点C到直线AB的距离为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,四边形ABCD是正方形,PA⊥平面ABCD,且PA=AB.
(1)求二面角A-PD-C的平面角的度数;
(2)求二面角B-PA-D的平面角的度数;
(3)求二面角B-PA-C的平面角的度数;
(4)求二面角B-PC-D的平面角的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.点A(0,2)是圆O:x2+y2=16内定点,B,C是这个圆上的两动点,若BA⊥CA,求BC中点M的轨迹方程为x2+y2-2y-6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x<0}\\{x+m,x≥0}\end{array}\right.$,以下说法正确的是(  )
A.?m∈R,函数f(x)在定义域上单调递增B.?m∈R,函数f(x)存在零点
C.?m∈R,函数f(x)有最大值D.?m∈R,函数f(x)没有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是圆O的切线;
(2)若∠CAB=60°,⊙O的半径为2,EC=1,求DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x、y、z满足x2+y2+z2=4,则(2x-y)2+(2y-z)2+(2z-x)2的最大值是(  )
A.12B.20C.28D.36

查看答案和解析>>

同步练习册答案