精英家教网 > 高中数学 > 题目详情
已知函数,若恒成立,则实数a的取值范围是(    )
A.B.
C.D.
B

试题分析:首先画出的图像,的图像为过的一组直线,若恒成立,只需始终在的下方,即直线夹在与相切的直线,和之间,所以转化为求切线斜率,=
联立,得:①,令,即,解得
代入①得成立,将代入①得,不满足,所以舍去,或通过选项也可知道.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中为常数.
(1)若函数在区间上单调,求的取值范围;
(2)若对任意,都有成立,且函数的图象经过点
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的图象在点(e为自然对数的底数)处取得极值-1.
(1)求实数的值;
(2)若不等式对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(函数
(1)若是偶函数,求实数的值;
(2)当时,求在区间上的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的自变量的取值区间为A,若其值域区间也为A,则称A为的保值区间.
(Ⅰ)求函数形如的保值区间;
(Ⅱ)函数是否存在形如的保值区间?若存在,求出实数的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=若函数g(x)=f(x)-m有三个不同的零点,则实数m的取值范围为(  )
A.-,1B.-,1C.-,0D.-,0

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若奇函数f(x)在(0,+∞)上的解析式是f(x)=x(1-x),则在(-∞,0)上,f(x)的解析式是(  ).
A.f(x)=-x(1-x)B.f(x)=x(1+x)
C.f(x)=-x(1+x)D.f(x)=x(1-x)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数下列是关于函数的零点个数的4个判断:
①当时,有3个零点;②当时,有2个零点;
③当时,有4个零点;④当时,有1个零点.
则正确的判断是(    )
A.①④B.②③C.①②D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是定义在上的函数,并满足时,,则  (    )
A.B.C.D.

查看答案和解析>>

同步练习册答案