精英家教网 > 高中数学 > 题目详情
5.已知数列{an}中,a1=2,当n≥2时,$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,设bn=$\frac{{a}_{n}}{{2}^{n}}$-1,则$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$等于(  )
A.$\frac{19}{10}$B.$\frac{29}{20}$C.$\frac{40}{21}$D.$\frac{36}{19}$

分析 当n≥2时,$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,即有$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n+1$
可得($\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}_{1}})+(\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}})+…(\frac{{a}_{n}}{{2}^{2}}-\frac{{a}_{n-1}}{{2}^{n-1}})$+($\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}$)+…+($\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$)=1+2+…+(n-1)
bn=$\frac{{a}_{n}}{{2}^{n}}$-1=$\frac{n(n-1)}{2}$,$\frac{1}{{b}_{n}}$=2($\frac{1}{n-1}-\frac{1}{n}$)
则$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$+…+$\frac{1}{{b}_{n}}$=2($\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$)即可求解

解答 解:∵当n≥2时,$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n+1$
$\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}^{1}}=1,\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}=2,…\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}=n-1$
∴($\frac{{a}_{2}}{{2}^{2}}-\frac{{a}_{1}}{{2}_{1}})+(\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}})+…(\frac{{a}_{n}}{{2}^{2}}-\frac{{a}_{n-1}}{{2}^{n-1}})$+($\frac{{a}_{3}}{{2}^{3}}-\frac{{a}_{2}}{{2}^{2}}$)+…+($\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{n-1}}{{2}^{n-1}}$)=1+2+…+(n-1)
∴$\frac{{a}_{n}}{{2}^{n}}-\frac{{a}_{1}}{{2}^{1}}=\frac{(n-1)(1+n-1)}{2}=\frac{n(n-1)}{2}$
∴bn=$\frac{{a}_{n}}{{2}^{n}}$-1=$\frac{n(n-1)}{2}$,$\frac{1}{{b}_{n}}$=2($\frac{1}{n-1}-\frac{1}{n}$)
∴则$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$+…+$\frac{1}{{b}_{n}}$=2($\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n-1}-\frac{1}{n}$)
故$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{20}}$等于2(1-$\frac{1}{20}$)=$\frac{19}{10}$
故选:A

点评 本题考查了累加法求数列通项,裂项相消法求和,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左、右焦点分别为F1、F2.左、右顶点分别为A、B,虚轴的上、下端点分别为C、D.若线段BC与双曲线的渐近线的交点为E,且∠BF1E=∠CF1E,则双曲线的离心率为(  )
A.1+$\sqrt{6}$B.1+$\sqrt{5}$C.1+$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一张边长为12cm的正方形纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)所示放置.如果正四棱锥的主视图是等边三角形,如图(3)所示,则正四棱锥的体积是(  )
A.$\frac{32}{3}$$\sqrt{6}$cm3B.$\frac{64}{3}$$\sqrt{6}$cm3C.$\frac{32}{3}$$\sqrt{2}$cm3D.$\frac{64}{3}$$\sqrt{2}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示给出的是计算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2017}$的值的一个程序框图,其中判断框内应填入的条件是(  )
A.i>1010B.i<1010C.i>1009D.i<1009

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知a=5,b=5$\sqrt{3}$.C=30°,则角C的对边c的长为(  )
A.5$\sqrt{13}$B.5$\sqrt{11}$C.5$\sqrt{7}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某数学兴趣小组有3名男生和2名女生,从中任选出2名同学参加数学竞赛,那么对立的两个事件为(  )
A.恰有1名女生与恰有2名女生B.至少有1名男生与全是男生
C.至少有1名男生与至少有1名女生D.至少有1名女生与全是男生

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的(  )条件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知复数z+i,$\frac{z}{2+i}$均为实数,且在复平面内,(z+ai)2的对应点在第四象限内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若$tanθ=\frac{1}{2}$,则cos2θ+sin2θ=(  )
A.$\frac{4}{5}$B.$\frac{6}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

同步练习册答案