精英家教网 > 高中数学 > 题目详情
(2009•孝感模拟)已知点P(x,y)满足
x-y+2≥0
2x+y-8≥0
x≤3
,则|
OP
|
(O是坐标圆点)的最大值等于
34
34
分析:先根据约束条件画出可行域,再利用几何意义求最值,z=|PO|表示(0,0)到可行域的距离,只需求出(0,0)到可行域的距离的最值即可.
解答:解:画出可行域,如图所示:
易得A(3,5),
OA=
3 2+5 2
=
34

由图可知,当P点在A点时,则|
OP
|
最大,最大值为
34

故|OP|的最大值为
34

故答案为:
34
点评:本题主要考查了简单的线性规划,以及利用几何意义求最值,本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点之间的距离问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•孝感模拟)设全集U=R,A={x|2x(x+3)<1},B={x|y=ln(-1-x)},则图中阴影部分表示的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)已知f(x)=x3-3x,过点A(1,m) (m≠-2)可作曲线y=f(x)的三条切线,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)函数f(x)=
ln(2+x-x2)
|x|-x
的定义域为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)某集团公司青年、中年、老年职员的人数之比为10:8:7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)有一块直角三角板,∠A=30°,∠C=90°,BC边在桌面上,当三角板所在平面与桌面成 45°角时,AB边与桌面所成角的正弦等于(  )

查看答案和解析>>

同步练习册答案