| A. | (0,3] | B. | (0,$\frac{1}{3}$] | C. | [$\frac{1}{3}$,3] | D. | [1,3] |
分析 由于函数f(x)是定义在R上的偶函数,则f(-x)=f(x),即有f(x)=f(|x|),f(log3a)+f(-log3a)≥2f(1),即为f(|log3a|)≥f(1),再由f(x)在区间[0,+∞)上单调递减,得到|log3a|≤1,即有-1≤log3a≤1,解出即可.
解答 解:由于函数f(x)是定义在R上的偶函数,
则f(-x)=f(x),即有f(x)=f(|x|),
由实数a满足f(log3a)+f(${log_{\frac{1}{3}}}a$)≥2f(1),
则有f(log3a)+f(-log3a)≥2f(1),
即2f(log3a)≥2f(1)即f(log3a)≥f(1),
即有f(|log3a|)≥f(1),
由于f(x)在区间[0,+∞)上单调递减,
则|log3a|≤1,即有-1≤log3a≤1,
解得$\frac{1}{3}$≤a≤3.
故选C.
点评 本题考查函数的性质和运用,考查函数的奇偶性、单调性和运用,考查对数不等式的解法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | {-2,-1,1,2} | C. | {-2,-1} | D. | {1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 优秀 | 一般 | 合计 | |
| 男生 | 7 | 6 | |
| 女生 | 5 | 12 | |
| 合计 |
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0 | B. | ?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0 | ||
| C. | ?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0 | D. | ?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com