精英家教网 > 高中数学 > 题目详情
17.已知a<0,则“ax0=b”的充要条件是(  )
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0

分析 a<0,令f(x)=$\frac{1}{2}$ax2-bx,利用导数可得:x=$\frac{b}{a}$函数f(x)的极大值点即最大值点,即可判断出结论.

解答 解:a<0,令f(x)=$\frac{1}{2}$ax2-bx,则f′(x)=ax-b,令f′(x)=0,解得x=$\frac{b}{a}$.
∴x=$\frac{b}{a}$函数f(x)的极大值点即最大值点,
∴?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
∴a<0,则“ax0=b”的充要条件是:?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
故选:C.

点评 本题考查了利用导数研究函数的单调性极值与最值、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}中,a5+a7=${∫}_{0}^{π}sinxdx$,则a4+a6+a8=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义在R上的函数f(x),恒有f(-x)+f(x)=0,且对任意x1,x2∈R有(x1-x2)[f(x1)-f(x2)]<0成立.若对t∈[0,2]均有f(2t2-4)+f(4m-2t)≥f(0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3{a}^{2}}$=1(a>0)的右顶点A作斜率为-1的直线,该直线与Γ的渐近线交于B、C两点(点B在第一象限,点C在第二象限),则$\frac{|BC|}{|AB|}$=(  )
A.1+$\sqrt{2}$B.1+$\sqrt{3}$C.2$\sqrt{2}$D.$\sqrt{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知ω>0,函数$f(x)=sin({ωx-\frac{π}{3}})$在$({\frac{π}{3},\frac{π}{2}})$上单调递减,则ω的取值范围是(  )
A.$[{\frac{5}{2},\frac{11}{3}}]$B.$[{\frac{1}{2},\frac{3}{4}}]$C.$({0,\frac{1}{2}}]$D.$({0,\frac{11}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递减,若实数a满足f(log3a)+f(${log_{\frac{1}{3}}}a$)≥2f(1),则a的取值范围是(  )
A.(0,3]B.(0,$\frac{1}{3}$]C.[$\frac{1}{3}$,3]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知平面向量$\overrightarrow a$=(0,-1),$\overrightarrow b$=(1,1),|λ$\overrightarrow a$+$\overrightarrow b$|=$\sqrt{5}$,则λ的值为(  )
A.3B.2C.3或-1D.2或-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设全集U=R,A=$\left\{{x|\frac{1}{{|{x-1}|}}<1}\right\},B=\left\{{x|{x^2}-5x+4>0}\right\}$,则A∩(∁UB)={x|2<x≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知不等式|x-2|<3的解集为A,函数y=ln(1-x)的定义域为B,则图中阴影部分表示的集合为(  )
A.{x∈R|-1<x<1}B.{x∈R|1≤x<5}C.{x∈R|1<x<5}D.{x∈R|x≥1}

查看答案和解析>>

同步练习册答案