精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}中,a5+a7=${∫}_{0}^{π}sinxdx$,则a4+a6+a8=3.

分析 利用微积分基本定理、等差数列的性质即可得出.

解答 解:∵a5+a7=${∫}_{0}^{π}sinxdx$=$-cosx{|}_{0}^{π}$=2=2a6
解得a6=1.
则a4+a6+a8=3a6=3.
故答案为:3.

点评 本题考查了微积分基本定理、等差数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)上一点M也在直线y=$\frac{1-{a}^{2}}{1+{a}^{2}}$上,M与N(0,1)两点所在直线过椭圆C的一个焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知P(x0,y0)是椭  圆C上一点,若过点($\frac{{x}_{0}}{3}$,-$\frac{{y}_{0}}{3}$)的直线与椭圆C有两个异于P的交点A,B,求证:PA丄PB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2-4ρcosθ+1=0,直线l:$\left\{\begin{array}{l}{x=4+tsinα}\\{y=tcosα}\end{array}\right.$(t为参数,0≤α<π).
(1)求曲线C的参数方程;
(2)若直线l与曲线C相切,求直线l的倾斜角及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{3}$,过左焦点任作直线l,交椭圆的上半部分于点M,当l的斜率为$\frac{{\sqrt{3}}}{3}$时,|FM|=$\frac{{4\sqrt{3}}}{3}$.
(1)求椭圆C的方程;
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列几个命题:
①命题p:任意x∈R,都有cosx≤1,则¬p:存在x0∈R,使得cosx0≤1
②命题“若a>2且b>2,则a+b>4且ab>4”的逆命题为假命题
③空间任意一点O和三点A,B,C,则$\overrightarrow{OA}$=3$\overrightarrow{OB}$=2$\overrightarrow{OC}$是A,B,C三点共线的充分不必要条件
④线性回归方程y=bx+a对应的直线一定经过其样本数据点(x1,y1),(x2,y2),…,(xn,yn)中的一个
其中不正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x|x>0},B={-2,-1,1,2},则(∁RA)∩B=(  )
A.(0,+∞)B.{-2,-1,1,2}C.{-2,-1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的前n项和为Sn,公比q>0,S2=2a2-2,S3=a4-2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\left\{\begin{array}{l}{\frac{lo{g}_{2}{a}_{n}}{{n}^{2}(n+2)},n为奇数}\\{\frac{n}{{a}_{n}},n为偶数}\end{array}\right.$,Tn为{bn}的前n项和,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平行四边形ABCD中,∠BAD=60°,E是CD上一点,且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$,|$\overrightarrow{AB}$|=λ|$\overrightarrow{AD}$|.若$\overrightarrow{AC}$•$\overrightarrow{EB}$=$\frac{1}{2}$$\overrightarrow{AD}$2,则λ等于(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a<0,则“ax0=b”的充要条件是(  )
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax02-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax02-bx0

查看答案和解析>>

同步练习册答案