精英家教网 > 高中数学 > 题目详情
9.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2-4ρcosθ+1=0,直线l:$\left\{\begin{array}{l}{x=4+tsinα}\\{y=tcosα}\end{array}\right.$(t为参数,0≤α<π).
(1)求曲线C的参数方程;
(2)若直线l与曲线C相切,求直线l的倾斜角及切点坐标.

分析 (1)由曲线C的极坐标方程,求出曲线C的直角坐标方程,得到曲线C是以C(2,0)为圆心,以r=$\sqrt{3}$为半径的圆,由此能求出曲线C的参数方程.
(2)直线l消去参数t,得直线l的直角坐标方程为:cosαx-sinαy-4cosα=0.由直线l与曲线C相切,知圆心C(2,0)到直线l的距离d等于圆半径r,由此能求出结果.

解答 解:(1)∵曲线C:ρ2-4ρcosθ+1=0,
∴曲线C的直角坐标方程为x2+y2-4x+1=0,即(x-2)2+y2=3,
∴曲线C是以C(2,0)为圆心,以r=$\sqrt{3}$为半径的圆,
∴曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.,(0≤θ<2π)$.
(2)∵直线l:$\left\{\begin{array}{l}{x=4+tsinα}\\{y=tcosα}\end{array}\right.$(t为参数,0≤α<π).
∴消去参数t,得直线l的直角坐标方程为:cosαx-sinαy-4cosα=0.
∵直线l与曲线C相切,∴圆心C(2,0)到直线l的距离d等于圆半径r,
即d=$\frac{|2cosα-4cosα|}{\sqrt{co{s}^{2}α+si{n}^{2}α}}$=2cosα=$\sqrt{3}$,∴cos$α=\frac{\sqrt{3}}{2}$,
∵0≤α<π,∴直线l的倾斜角α=$\frac{π}{6}$,
∴直线l的方程为$\sqrt{3}$x-y-4$\sqrt{3}$=0,
联立$\left\{\begin{array}{l}{(x-2)^{2}+{y}^{2}=3}\\{\sqrt{3}x-y-4\sqrt{3}=0}\end{array}\right.$,得x=$\frac{7}{2}$,y=-$\frac{\sqrt{3}}{2}$,
∴切点坐标为($\frac{7}{2}$,-$\frac{\sqrt{3}}{2}$).

点评 本题考查曲线的参数方程的求法,考查直线的倾斜角和切点坐标的求法,考查两点间距离公式的应用,是中档题,解题时要认真审题,注意参数方程、直角坐标方程、极坐标方程互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在△ABC中,BC:AB=2:$\sqrt{3}$,∠B=30°,则∠C=(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,直线l1:x=-2,曲线$C:\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.
(1)求直线l1及曲线C的极坐标方程;
(2)若直线l2的极坐标方程为$θ=\frac{π}{4}$(ρ∈R),设l2与曲线C的交点为M,N,求△CMN的面积及l1与l2交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设命题p:函数y=f(x)不是偶函数,命题q:函数y=f(x)是单调函数,则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若曲线f(x)=$\sqrt{x}$在点(a,f(a))处的切线与两坐标轴围成的图形的面积为$\frac{1}{4}$,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow a}|=2,|{\overrightarrow b}$|=2,|$\overrightarrow{b}$|=1,且($\overrightarrow a+3\overrightarrow b})⊥({2\overrightarrow a-\overrightarrow b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.二项式(ax3+$\frac{1}{\sqrt{x}}$)7的展开式中常数项为14,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知等差数列{an}中,a5+a7=${∫}_{0}^{π}sinxdx$,则a4+a6+a8=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.定义在R上的函数f(x),恒有f(-x)+f(x)=0,且对任意x1,x2∈R有(x1-x2)[f(x1)-f(x2)]<0成立.若对t∈[0,2]均有f(2t2-4)+f(4m-2t)≥f(0)成立,求m的取值范围.

查看答案和解析>>

同步练习册答案