精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow a,\overrightarrow b$满足|$\overrightarrow a}|=2,|{\overrightarrow b}$|=2,|$\overrightarrow{b}$|=1,且($\overrightarrow a+3\overrightarrow b})⊥({2\overrightarrow a-\overrightarrow b}$)⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow a,\overrightarrow b$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 根据$(\overrightarrow{a}+3\overrightarrow{b})⊥(2\overrightarrow{a}-\overrightarrow{b})$即可得出$(\overrightarrow{a}+3\overrightarrow{b})•(2\overrightarrow{a}-\overrightarrow{b})=0$,进行数量积的运算即可求出$\overrightarrow{a}•\overrightarrow{b}$的值,进而求出$cos<\overrightarrow{a},\overrightarrow{b}>$的值,从而得出$\overrightarrow{a},\overrightarrow{b}$的夹角.

解答 解:∵$(\overrightarrow{a}+3\overrightarrow{b})⊥(2\overrightarrow{a}-\overrightarrow{b})$;
∴$(\overrightarrow{a}+3\overrightarrow{b})•(2\overrightarrow{a}-\overrightarrow{b})$=$2{\overrightarrow{a}}^{2}+5\overrightarrow{a}•\overrightarrow{b}-3{\overrightarrow{b}}^{2}$=$8+5\overrightarrow{a}•\overrightarrow{b}-3=0$;
∴$\overrightarrow{a}•\overrightarrow{b}=-1$;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=-\frac{1}{2}$;
∵两向量夹角的取值范围为[0,π].
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{2π}{3}$.
故选A.

点评 考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的余弦公式,向量夹角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.(2$\sqrt{x}$-$\frac{1}{\root{4}{x}}$)6的展开式的常数项是60(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将圆的六个等分点分成相同的两组,它们每组三个点构成的两个正三角形除去内部的六条线段后可以形成一个正六角星.如图所示的正六角星的中心为点O,其中x,y分别为点O到两个顶点的向量.若将点O到正六角星12个顶点的向量都写成ax+by的形式,则a+b的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是(  )
A.1<x1<2,x1+x2<2B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2D.x1>1,x1+x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C:ρ2-4ρcosθ+1=0,直线l:$\left\{\begin{array}{l}{x=4+tsinα}\\{y=tcosα}\end{array}\right.$(t为参数,0≤α<π).
(1)求曲线C的参数方程;
(2)若直线l与曲线C相切,求直线l的倾斜角及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线上存在一点与其中心及一个焦点构成等边三角形,则此双曲线的离心率为(  )
A.2B.$\sqrt{3}$+1C.$\sqrt{3}$D.$\sqrt{3}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{3}$,过左焦点任作直线l,交椭圆的上半部分于点M,当l的斜率为$\frac{{\sqrt{3}}}{3}$时,|FM|=$\frac{{4\sqrt{3}}}{3}$.
(1)求椭圆C的方程;
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.集合A={x|x>0},B={-2,-1,1,2},则(∁RA)∩B=(  )
A.(0,+∞)B.{-2,-1,1,2}C.{-2,-1}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.从某地区一次中学生知识竞赛中,随机抽取了30名学生的成绩,绘成如图所示的2×2列联表:
优秀一般合计
男生76
女生512
合计
(1)试问有没有90%的把握认为优秀一般与性别有关;
(2)用样本估计总体,把频率作为概率,若从该地区所有的中学(人数很多)中随机抽取3人,用ξ表示所选3人中优秀的人数,试写出ξ的分布列,并求出ξ的数学期望,.${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
独立性检验临界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

同步练习册答案