【题目】某客户考察了一款热销的净水器,使用寿命为十年,改款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换
个一级滤芯就需要更换
个二级滤芯,三级滤芯无需更换.其中一级滤芯每个
元,二级滤芯每个
元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为
.如图是根据
台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.
![]()
(1)结合图,写出集合
;
(2)根据以上信息,求出一台净水器在使用期内更换二级滤芯的费用大于
元的概率(以
台净水器更换二级滤芯的频率代替
台净水器更换二级滤芯发生的概率);
(3)若在购买净水器的同时购买滤芯,则滤芯可享受
折优惠(使用过程中如需再购买无优惠).假设上述
台净水器在购机的同时,每台均购买
个一级滤芯、
个二级滤芯作为备用滤芯(其中
,
),计算这
台净水器在使用期内购买滤芯所需总费用的平均数.并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为
个,则其中一级滤芯和二级滤芯的个数应分别是多少?
【答案】(1)
;(2)0.3;(3)见解析.
【解析】
(1)根据直方图和一级滤芯和二级滤芯之间的关系,可得答案;
(2)更换二级滤芯的费用大于
元,即更换4个二级滤芯,转化为更换12个一级滤芯,由直方图得出答案;
(3)
,
,可以分为
和
两种情况,分别算出其平均数,得到结论
(1)由题意可知当一级滤芯更换
、
、
个时,二级滤芯需要更换
个,
当一级滤芯更换
个时,二级滤芯需要更换
个,所以
;
(2)由题意可知二级滤芯更换
个,需
元,二级滤芯更换
个,需
元,
在
台净水器中,二级滤芯需要更换
个的净水器共
台,二级滤芯需要更换
个的净水器共
台,
设“一台净水器在使用期内更换二级滤芯的费用大于
元”为事件
,所以
;
(3)因为
,
,
(i)若
,
,
则这
台净水器在更换滤芯上所需费用的平均数为
![]()
(ii)若
,
,
则这
台净水器在更换滤芯上所需费用的平均数为
![]()
所以如果客户购买净水器的同时购买备用滤芯的总数为
个,
客户应该购买一级滤芯
个,二级滤芯
个。
科目:高中数学 来源: 题型:
【题目】已知
是函数y=f(x)的导函数,定义
为
的导函数,若方程
=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的拐点,经研究发现,所有的三次函数f(x)=ax3+bx2+cx+d(a≠0)都有拐点,且都有对称中心,其拐点就是对称中心,设f(x)=x3﹣3x2﹣3x+6,则f(
)+f(
)+……+f(
)=_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次测验中,某班40名考生的成绩满分100分统计如图所示.
![]()
(Ⅰ)估计这40名学生的测验成绩的中位数
精确到0.1;
(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?
合格 | 优秀 | 合计 | |
男生 | 16 | ||
女生 | 4 | ||
合计 | 40 |
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a的正三角形ABC 绕其中心O逆时针旋转到三角形A1B1C1,且
.顺次连结A,A1,B,B1,C,C1,A,得到六边形徽标AA1BB1CC1 .
![]()
(1)当=
时,求六边形徽标的面积;
(2)求六边形徽标的周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的定义域为
,若存在一次函数
,使得对于任意的
,都有
恒成立,则称函数
在
上的弱渐进函数.下列结论正确的是__________.(写出所有正确命题的序号)
①
是
在
上的弱渐进函数;
②
是
在
上的弱渐进函数;
③
是
在
上的弱渐进函数;
④
是
在
上的弱渐进函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中取两个定点
,
,再取两个动点
,
,且
.
(1)求直线
与
的交点
的轨迹
的方程;
(2)过
的直线与轨迹
交于
两点,过点
作
轴且与轨迹
交于另一点
,
为轨迹
的右焦点,若
,求证:![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com