【题目】已知函数![]()
.
(1)求函数
的单调区间;
(2)若函数
的图象在点
处的切线的斜率为1,问:
在什么范围取值时,对于任意的
,函数
在区间
上总存在极值?
【答案】(1)当
时,函数
的单调增区间是
,单调减区间是
;当
时,函数
的单调增区间是
,单调减区间是
;(2)
.
【解析】
(1)利用导数求函数的单调区间的步骤是①求导函数
;②解
(或<0);③得到函数的增区间(或减区间),
(2)点
处的切线的斜率为1,即
,可求
值,代入得
的解析式,由
,且
在区间
上总不是单调函数可知:g′(1)<0,g′(2)<0,g′(3)>0,于是可求m的范围.
(1)由![]()
知:
当
时,函数
的单调增区间是
,单调减区间是
;
当
时,函数
的单调增区间是
,单调减区间是
;
(2)由![]()
得![]()
,
.
![]()
,
∵函数
在区间
上总存在极值,
∴
有两个不等实根且至少有一个在区间
内
又∵函数
是开口向上的二次函数,且![]()
,![]()
由![]()
得
,
在
上单调递减,
所以![]()
;
,
由
,解得
;
综上得:
所以当m在
内取值时,对于任意
,函数
,在区间
上总存在极值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)ex+ax2(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个零点x1,x2(x1<x2),证明:x1+x2<0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某客户考察了一款热销的净水器,使用寿命为十年,改款净水器为三级过滤,每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯需要不定期更换,其中每更换
个一级滤芯就需要更换
个二级滤芯,三级滤芯无需更换.其中一级滤芯每个
元,二级滤芯每个
元.记一台净水器在使用期内需要更换的二级滤芯的个数构成的集合为
.如图是根据
台该款净水器在十年使用期内更换的一级滤芯的个数制成的柱状图.
![]()
(1)结合图,写出集合
;
(2)根据以上信息,求出一台净水器在使用期内更换二级滤芯的费用大于
元的概率(以
台净水器更换二级滤芯的频率代替
台净水器更换二级滤芯发生的概率);
(3)若在购买净水器的同时购买滤芯,则滤芯可享受
折优惠(使用过程中如需再购买无优惠).假设上述
台净水器在购机的同时,每台均购买
个一级滤芯、
个二级滤芯作为备用滤芯(其中
,
),计算这
台净水器在使用期内购买滤芯所需总费用的平均数.并以此作为决策依据,如果客户购买净水器的同时购买备用滤芯的总数也为
个,则其中一级滤芯和二级滤芯的个数应分别是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数).以坐标原点为极点,
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)写出
的普通方程及
的直角坐标方程;
(2)设点
在
上,点
在
上,求
的最小值及此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已如椭圆E:
(
)的离心率为
,点
在E上.
(1)求E的方程:
(2)斜率不为0的直线l经过点
,且与E交于P,Q两点,试问:是否存在定点C,使得
?若存在,求C的坐标:若不存在,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com