【题目】已知函数,其图象的一条切线为.
(1)求实数的值;
(2)求证:若,则.
【答案】(1);(2)答案见解析
【解析】
(1)假设切点,根据曲线在某点处导数的几何意义,以及已知的切线方程,可得,然后研究可得,最后代值计算,可得结果.
(2)构建函数,计算,并利用二阶导判断的单调性,根据的值域来判断的单调性,进一步求得,可得结果.
(1)函数定义域为
∵,∴.
由题可知:
在点处的切线为,
则且,
∴,即.
令,
则.
当时,
,在单调递增;
当时,
,在单调递减.
当时,;
当时,.
∴,.故实数的值为.
(2)令
即
则.
即
令,
则,
∵恒成立,
∴在单调递减,即在单调递减.
又,
,
∴,使得.
∴当时,;
当时,,
故在单调递增,在单调递减.
∴.
又,即,
∴,
.
令,.
则.
∵恒成立,
∴,故在单调递增.
∴,
故,
即.
∴当时,.
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的焦点为F,准线为l,过准线l上一点且斜率为k的直线交抛物线C于A,B两点,线段AB的中点为P,直线PF交抛物线C于D,E两点.
(1)求抛物线C的方程及k的取值范围;
(2)是否存在k值,使点P是线段DE的中点?若存在,求出k值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数的图象为C,如下结论中正确的是( )
①图象C关于直线对称;②函数在区间内是增函数;
③图象C关于点对称;④由的图象向右平移个单位长度可以得到图象C
A.①③B.②③C.①②③D.①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个统计案例如下:
①为了探究患慢性支气管炎与吸烟关系,调查了339名50岁以上的人,调查结果如表:
②为了解某地母亲与女儿身高的关系,随机测得10对母女的身高如下表:
则对这些数据的处理所应用的统计方法是( )
A.①回归分析②取平均值
B.①独立性检验②回归分析
C.①回归分析②独立性检验
D.①独立性检验②取平均值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,一个仓库设计由上部屋顶和下部主体两部分组成,屋顶的形状是四棱锥,四边形是正方形,点为正方形的中心,平面;下部的形状是长方体.已知上部屋顶造价与屋顶面积成正比,比例系数为,下部主体造价与高度成正比,比例系数为.若欲造一个上、下总高度为10,的仓库,则当总造价最低时,( )
A.B.C.4D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了保障人民群众的身体健康,在预防新型冠状病毒期间,贵阳市市场监督管理局加强了对市场的监管力度,对生产口罩的某工厂利用随机数表对生产的个口罩进行抽样测试是否合格,先将个口罩进行编号,编号分别为;从中抽取个样本,如下提供随机数表的第行到第行:
若从表中第行第列开始向右依次读取个数据,则得到的第个样本编号为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设三角形的边长为不相等的整数,且最大边长为n,这些三角形的个数为an.
(1)求数列{an}的通项公式;
(2)在1,2,…,100中任取三个不同的整数,求它们可以是一个三角形的三条边长的概率.
附:1+22+32+…+n2;1+23+33+…+n3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中为常数,且.
(1)若是奇函数,求的取值集合;
(2)当时,设的反函数,且的图象与的图象关于对称,求的取值集合;
(3)对于问题(1)(2)中的、,当时,不等式恒成立,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com