【题目】设三角形的边长为不相等的整数,且最大边长为n,这些三角形的个数为an.
(1)求数列{an}的通项公式;
(2)在1,2,…,100中任取三个不同的整数,求它们可以是一个三角形的三条边长的概率.
附:1+22+32+…+n2;1+23+33+…+n3
【答案】(1)(2).
【解析】
(1)设x,y,n为满足题意的三角形的边长,不妨设x<y<n,则x+y>n.若,三角形不存在,,时,按奇偶分类,为偶数,最小值为,为偶数,最小值为,然后依次得出的所有可能,从而得三角形的个数,相加后可得;
(2)根据(1)用所给公式求出,而100个数中任取3个的方法数是,由此可计算概率.
(1)设x,y,n为满足题意的三角形的边长,不妨设x<y<n,则x+y>n.
由题意知:a1=a2=a3=0,
当n≥4时,且n为偶数时,若y,三角形不存在,
若y,x,
若,x.
…,
若y=n﹣1,x=2,3,…,n﹣2,
所以:an=1+3+…+(n﹣3).
同理,当n>4时,且n为奇数时,可得:,
所以数列{an}的通项公式为.
(2)根据求和公式,
=(12+22+32+…+492)+12+22+…+482+(1+2+3+…+48),
,
.
所求的概率为.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)x+alnx.
(1)求f(x)在(1,f(1))处的切线方程(用含a的式子表示)
(2)讨论f(x)的单调性;
(3)若f(x)存在两个极值点x1,x2,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度单位长度:,其茎叶图如图所示,则下列描述正确的是( )
A. 甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐
B. 甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐
C. 乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐
D. 乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务时间的统计数据如下:
超过1小时 | 不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解学生对消防安全知识的掌握情况,开展了网上消防安全知识有奖竞赛活动,并对参加活动的男生、女生各随机抽取20人,统计答题成绩,分别制成如下频率分布直方图和茎叶图:
(1)把成绩在80分以上(含80分)的同学称为“安全通”.根据以上数据,完成以下列联表,并判断是否有95%的把握认为是否是“安全通”与性别有关
男生 | 女生 | 合计 | |
安全通 | |||
非安全通 | |||
合计 |
(2)以样本的频率估计总体的概率,现从该校随机抽取2男2女,设其中“安全通”的人数为,求的分布列与数学期望.
附:参考公式,其中.
参考数据:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定椭圆C:(),称圆心在原点O,半径为的圆是椭圆C的“卫星圆”.若椭圆C的离心率,点在C上.
(1)求椭圆C的方程和其“卫星圆”方程;
(2)点P是椭圆C的“卫星圆”上的一个动点,过点P作直线,使得,与椭圆C都只有一个交点,且,分别交其“卫星圆”于点M,N,证明:弦长为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某居民区有一个银行网点(以下简称“网点”),网点开设了若干个服务窗口,每个窗口可以办理的业务都相同,每工作日开始办理业务的时间是8点30分,8点30分之前为等待时段.假设每位储户在等待时段到网点等待办理业务的概率都相等,且每位储户是否在该时段到网点相互独立.根据历史数据,统计了各工作日在等待时段到网点等待办理业务的储户人数,得到如图所示的频率分布直方图:
(1)估计每工作日等待时段到网点等待办理业务的储户人数的平均值;
(2)假设网点共有1000名储户,将频率视作概率,若不考虑新增储户的情况,解决以下问题:
①试求每位储户在等待时段到网点等待办理业务的概率;
②储户都是按照进入网点的先后顺序,在等候人数最少的服务窗口排队办理业务.记“每工作日上午8点30分时网点每个服务窗口的排队人数(包括正在办理业务的储户)都不超过3”为事件,要使事件的概率不小于0.75,则网点至少需开设多少个服务窗口?
参考数据:;;
;.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com