精英家教网 > 高中数学 > 题目详情

【题目】等差数列中, 其前项和为.

1求数列的通项公式;

(2)设数列满足其前项和为为求证: .

【答案】(1) (2)见解析

【解析】试题分析:1等差数列中,根据 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2先求出 根据裂项相消法求解即可.

试题解析:(1因为

所以

2

【方法点晴】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2 3;(4 ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函数h(x)=f(x)﹣g(x)在[﹣2,0]上有两个零点,求实数a的取值范围;
(2)若存在x0∈R,使得f(x0)≤0与g(x0)≤0同时成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数同时满足以下两个条件:

(1)对于任意实数,都有

(2)总存在,使成立.

则实数的取值范围是 __________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )

(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学;

(2)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速;

(3)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间.

A. (1)(2)(4) B. (4)(2)(1) C. (4)(3)(1) D. (4)(1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=6,sinA= ,B=A+
(1)求b的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg

(1)求f(x)的定义域并判断它的奇偶性.

(2)判断f(x)的单调性并用定义证明.

(3)解关于x的不等式f(x)+f(2x2﹣1)0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=log

(1)当a=1时,解不等式f(x)1;

(2)若关于x的方程g(x)=f(x)﹣log3(ax+1)有且只有一个零点,求a的取值范围;

(3)设0a1,若对任意t,函数f(x)在区间[t,t+1]上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手大多在以下两个年龄段:21~30,31~40(单位:岁),统计这两个年龄段选手答对歌曲名称与否的人数如图所示.
(参考公式:K2= ,其中n=a+b+c+d)

(1)写出2×2列联表,并判断是否有90%的把握认为答对歌曲名称与否和年龄有关,说明你的理由.(下面的临界值表供参考)

P(K2≥k0

0.1

0.05

0.01

0.005

k0

2.706

3.841

6.635

7.879


(2)在统计过的参考选手中按年龄段分层选取9名选手,并抽取3名幸运选手,求3名幸运选手中在21~30岁年龄段的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数集由实数构成,且满足:若),则.

(1)若,试证明中还有另外两个元素;

(2)集合是否为双元素集合,并说明理由;

(3)若中元素个数不超过8个,所有元素的和为,且中有一个元素的平方等于所有元素的积,求集合.

查看答案和解析>>

同步练习册答案